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Abstract 

Our day-to-day life has always been influenced by what people think. Ideas and opinions of 

others have always affected our own opinions. The explosion of Web 2.0 has led to increased 

activity in Podcasting, Blogging, Tagging, Contributing to RSS, Social Bookmarking, and 

Social Networking. As a result there has been an eruption of interest in people to mine these 

vast resources of data for opinions. Sentiment Analysis or Opinion Mining is the 

computational treatment of opinions, sentiments and subjectivity of text. In this report, we 

take a look at the various challenges and applications of Sentiment Analysis. We will discuss 

in details various approaches to perform a computational treatment of sentiments and 

opinions. Various supervised or data-driven techniques to SA like Naïve Byes, Maximum 

Entropy, SVM, and Voted Perceptrons will be discussed and their strengths and drawbacks 

will be touched upon. We will also see a new dimension of analyzing sentiments by Cognitive 

Psychology mainly through the work of Janyce Wiebe, where we will see ways to detect 

subjectivity, perspective in narrative and understanding the discourse structure.  We will also 

study some specific topics in Sentiment Analysis and the contemporary works in those areas. 
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1. INTRODUCTION 

 WHAT IS SENTIMENT ANALYSIS? 1.1

Sentiment Analysis is a Natural Language Processing and Information Extraction task that 

aims to obtain writer’s feelings expressed in positive or negative comments, questions and 

requests, by analyzing a large numbers of documents. Generally speaking, sentiment analysis 

aims to determine the attitude of a speaker or a writer with respect to some topic or the overall 

tonality of a document. In recent years, the exponential increase in the Internet usage and 

exchange of public opinion is the driving force behind Sentiment Analysis today. The Web is 

a huge repository of structured and unstructured data. The analysis of this data to extract 

latent public opinion and sentiment is a challenging task. 

Liu et al. (2009) defines a sentiment or opinion as a quintuple-  

“<o j, fjk, soijkl, hi, tl >, where oj is a target object, fjk is a feature of the object oj, soijkl is 

the sentiment value of the opinion of the opinion holder hi on feature fjk of object oj at 

time tl, soijkl is +ve,-ve, or neutral, or a more granular rating, hi is an opinion holder, 

tl is the time when the opinion is expressed.” 

The analysis of sentiments may be document based where the sentiment in the entire 

document is summarized as positive, negative or objective. It can be sentence based where 

individual sentences, bearing sentiments, in the text are classified. SA can be phrase based 

where the phrases in a sentence are classified according to polarity. 

Sentiment Analysis identifies the phrases in a text that bears some sentiment. The author may 

speak about some objective facts or subjective opinions. It is necessary to distinguish between 

the two. SA finds the subject towards whom the sentiment is directed. A text may contain 

many entities but it is necessary to find the entity towards which the sentiment is directed. It 

identifies the polarity and degree of the sentiment. Sentiments are classified as objective 

(facts), positive (denotes a state of happiness, bliss or satisfaction on part of the writer) or 

negative (denotes a state of sorrow, dejection or disappointment on part of the writer). The 

sentiments can further be given a score based on their degree of positivity, negativity or 

objectivity. 
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 APPLICATIONS OF SENTIMENT ANALYSIS 1.2

Word of mouth (WOM) is the process of conveying information from person to person and 

plays a major role in customer buying decisions. In commercial situations, WOM involves 

consumers sharing attitudes, opinions, or reactions about businesses, products, or services 

with other people. WOM communication functions based on social networking and trust. 

People rely on families, friends, and others in their social network. Research also indicates 

that people appear to trust seemingly disinterested opinions from people outside their 

immediate social network, such as online reviews. This is where Sentiment Analysis comes 

into play. Growing availability of opinion rich resources like online review sites, blogs, social 

networking sites have made this “decision-making process” easier for us. With explosion of 

Web 2.0 platforms consumers have a soapbox of unprecedented reach and power by which 

they can share opinions. Major companies have realized these consumer voices affect shaping 

voices of other consumers. 

Sentiment Analysis thus finds its use in Consumer Market for Product reviews, Marketing for 

knowing consumer attitudes and trends, Social Media for finding general opinion about recent 

hot topics in town, Movie to find whether a recently released movie is a hit.  

Pang-Lee et al. (2002) broadly classifies the applications into the following categories. 

a. Applications to Review-Related Websites 

Movie Reviews, Product Reviews etc. 

b. Applications as a Sub-Component Technology 

Detecting antagonistic, heated language in mails, spam detection, context sensitive 

information detection etc. 

c. Applications in Business and Government Intelligence 

Knowing Consumer attitudes and trends 

d. Applications across Different Domains 

Knowing public opinions for political leaders or their notions about rules and regulations 

in place etc. 
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 CHALLENGES FOR SENTIMENT ANALYSIS 1.3

Sentiment Analysis approaches aim to extract positive and negative sentiment bearing words 

from a text and classify the text as positive, negative or else objective if it cannot find any 

sentiment bearing words. In this respect, it can be thought of as a text categorization task.  In 

text classification there are many classes corresponding to different topics whereas in 

Sentiment Analysis we have only 3 broad classes. Thus it seems Sentiment Analysis is easier 

than text classification which is not quite the case. The general challenges can be summarized 

as: 

1.3.1 Implicit Sentiment and Sarcasm 

A sentence may have an implicit sentiment even without the presence of any sentiment 

bearing words. Consider the following examples. 

How can anyone sit through this movie? 

One should question the stability of mind of the writer who wrote this book. 

Both the above sentences do not explicitly carry any negative sentiment bearing words 

although both are negative sentences. Thus identifying semantics is more important in SA 

than syntax detection. 

1.3.2 Domain Dependency  

There are many words whose polarity changes from domain to domain. Consider the 

following examples. 

The story was unpredictable. 

The steering of the car is unpredictable. 

Go read the book. 

In the first example, the sentiment conveyed is positive whereas the sentiment conveyed in the 

second is negative. The third example has a positive sentiment in the book domain but a 

negative sentiment in the movie domain (where the director is being asked to go and read the 

book). 
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1.3.3 Thwarted Expectations  

Sometimes the author deliberately sets up context only to refute it at the end. Consider the 

following example: 

This film should be brilliant. It sounds like a great plot, the actors are first grade, and the 

supporting cast is good as well, and Stallone is attempting to deliver a good performance. 

However, it can’t hold up. 

Inspite of the presence of words that are positive in orientation the overall sentiment is 

negative because of the crucial last sentence, whereas in traditional text classification this 

would have been classified as positive as term frequency is more important there than term 

presence. 

1.3.4 Pragmatics 

It is important to detect the pragmatics of user opinion which may change the sentiment 

thoroughly. Consider the following examples: 

I just finished watching Barca DESTROY Ac Milan 

That final completely destroyed me. 

Capitalization can be used with subtlety to denote sentiment. The first example denotes a 

positive sentiment whereas the second denotes a negative sentiment. There are many other 

ways of expressing pragmatism. 

1.3.5 World Knowledge 

Often world knowledge needs to be incorporated in the system for detecting sentiments. 

Consider the following examples: 

He is a Frankenstein. 

Just finished Doctor Zhivago for the first time and all I can say is Russia sucks. 

The first sentence depicts a negative sentiment whereas the second one depicts a positive 

sentiment. But one has to know about Frankenstein and Doctor Zhivago to find out the 

sentiment. 
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1.3.6 Subjectivity Detection 

This is to differentiate between opinionated and non-opinionated text. This is used to enhance 

the performance of the system by including a subjectivity detection module to filter out 

objective facts. But this is often difficult to do. Consider the following examples: 

I hate love stories. 

I do not like the movie “I hate stories”. 

The first example presents an objective fact whereas the second example depicts the opinion 

about a particular movie. 

1.3.7 Entity Identification 

A text or sentence may have multiple entities. It is extremely important to find out the entity 

towards which the opinion is directed. Consider the following examples. 

 Samsung is better than Nokia 

Ram defeated Hari in football. 

The examples are positive for Samsung and Ram respectively but negative for Nokia and 

Hari.  

1.3.8 Negation 

Handling negation is a challenging task in SA. Negation can be expressed in subtle ways even 

without the explicit use of any negative word. A method often followed in handling negation 

explicitly in sentences like “I do not like the movie”,  is to reverse the polarity of all the words 

appearing after the negation operator (like not). But this does not work for “I do not like the 

acting but I like the direction”. So we need to consider the scope of negation as well, which 

extends only till but here. So the thing that can be done is to change polarity of all words 

appearing after a negation word till another negation word appears. But still there can be 

problems. For example, in the sentence “Not only did I like the acting, but also the direction”, 

the polarity is not reversed after “not” due to the presence of “only”. So this type of 

combinations of “not” with other words like “only” has to be kept in mind while designing the 

algorithm. 
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 FEATURES FOR SENTIMENT ANALYSIS 1.4

Feature engineering is an extremely basic and essential task for Sentiment Analysis. 

Converting a piece of text to a feature vector is the basic step in any data driven approach to 

SA. In the following section we will see some commonly used features used in Sentiment 

Analysis and their critiques. 

Term Presence vs. Term Frequency 

Term frequency has always been considered essential in traditional Information Retrieval and 

Text Classification tasks. But Pang-Lee et al. (2002) found that term presence is more 

important to Sentiment analysis than term frequency. That is, binary-valued feature vectors in 

which the entries merely indicate whether a term occurs (value 1) or not (value 0). This is not 

counter-intuitive as in the numerous examples we saw before that the presence of even a 

single string sentiment bearing words can reverse the polarity of the entire sentence. It has 

also been seen that the occurrence of rare words contain more information than frequently 

occurring words, a phenomenon called Hapax Legomena. 

Term Position 

Words appearing in certain positions in the text carry more sentiment or weightage than 

words appearing elsewhere. This is similar to IR where words appearing in topic Titles, 

Subtitles or Abstracts etc are given more weightage than those appearing in the body. In the 

example given in Section 1.3.c, although the text contains positive words throughout, the 

presence of a negative sentiment at the end sentence plays the deciding role in determining the 

sentiment. Thus generally words appearing in the 1st few sentences and last few sentences in a 

text are given more weightage than those appearing elsewhere. 

N-gram Features 

N-grams are capable of capturing context to some extent and are widely used in Natural 

Language Processing tasks. Whether higher order n-grams are useful is a matter of debate. 

Pang et al. (2002) reported that unigrams outperform bigrams when classifying movie reviews 

by sentiment polarity, but Dave et al. (2003) found that in some settings, bigrams and 

trigrams perform better. 

Subsequence Kernels 

Most of the works on Sentiment Analysis use word or sentence level model, the results of 

which are averaged across all words/sentences/n-grams in order to produce a single model 
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output for each review. Bikel et al. (2007) use subsequences. The intuition is that the feature 

space implicitly captured by subsequence kernels is sufficiently rich to obviate the need for 

explicit knowledge engineering or modeling of word- or sentence-level sentiment. 

 Word sequence kernels of order n are a weighted sum over all possible word 

sequences of length n that occur in both of the strings being compared. 

 Mathematically, the word sequence kernel is defined as    

 

Equation 1.1: Sequence Kernel 

where λ is a kernel parameter that can be thought of as a gap penalty, i refers to a vector of 

length n that consists of the indices of string s that correspond to the subsequence u. And, the 

value i[n] − i [1] + 1 can be regarded as the total length of the span of s that constitutes a 

particular occurrence of the subsequence u. Following Rousu et al. (2005), they combine the 

kernels of orders one through four through an exponential weighting, 

 

Equation 1.2: Combining Sequential Kernels of Different Order 

Parts of Speech 

Parts of Speech information is most commonly exploited in all NLP tasks. One of the most 

important reasons is that they provide a crude form of word sense disambiguation.  

Adjectives only 

Adjectives have been used most frequently as features amongst all parts of speech. A strong 

correlation between adjectives and subjectivity has been found. Although all the parts of 

speech are important people most commonly used adjectives to depict most of the sentiments 

and a high accuracy have been reported by all the works concentrating on only adjectives for 

feature generation. Pang Lee et al. (2002) achieved as accuracy of around 82.8% in movie 

review domains using only adjectives in movie review domains. 

 Proposed Word Lists 

Human 1 positive: dazzling, brilliant, phenomenal, excellent, fantastic 

negative: suck, terrible, awful, unwatchable, hideous  
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Human 2 positive: gripping, mesmerizing, riveting, spectacular, cool, awesome, thrilling, 

badass, excellent, moving, exciting 

negative: bad, clichéd, sucks, boring, stupid, slow 

Table 1.1: Word List containing Positive and Negative Adjectives 

Adjective-Adverb Combination  

Most of the adverbs have no prior polarity. But when they occur with sentiment bearing 

adjectives, they can play a major role in determining the sentiment of a sentence. Benamara et 

al. (2007) have shown how the adverbs alter the sentiment value of the adjective that they are 

used with. Adverbs of degree, on the basis of the extent to which they modify this sentiment 

value, are classified as: 

o Adverbs of affirmation: certainly, totally 

o Adverbs of doubt: maybe, probably 

o Strongly intensifying adverbs: exceedingly, immensely 

o Weakly intensifying adverbs: barely, slightly 

o Negation and minimizers: never 

The work defined two types of AACs: 

1. Unary AACs: Containing one adverb and one adjective. The sentiment score of the 

adjective is modified using the adverb adjoining it. 

2. Binary AACs: Containing more than one adverb and an adjective. The sentiment score 

of the AAC is calculated by iteratively modifying the score of the adjective as each 

adverb gets added to it. This is equivalent to defining a binary AAC in terms of two 

unary AACs iteratively defined. 

To calculate the sentiment value of an AAC, a score is associated with it based on the score of 

the adjective and the adverb. Certain axiomatic rules are specified to specify the way the 

adverbs modify the sentiment of the adjective. One such axiom can be stated as: 

‘Each weakly intensifying adverb and each adverb of doubt has a score less than or equal to 

each strongly intensifying adverb / adverb of affirmation.’ 

Then, certain functions are described in order to quantify the axioms. A function f takes an 

adjective-adverb pair and returns its resultant score. 

1. Affirmative and strongly intensifying adverbs 
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For example, f value for ‘immensely good’ is more positive than the score for the positive 

adjective ‘good’. 

2. Weakly intensifying adverbs 

 

For example, f value for ‘barely good’ is more negative than the score for the positive 

adjective ‘good’. This is the effect that the weakly intensifying adverb has. 

3. Adverbs of doubt 

 

For example, f value for ‘probably good’ is less than ‘immensely good’ 

4. Minimizers 

 

For example, ‘hardly good’ is less positive than the positive adjective ‘good’ 

Scoring algorithms 

a. Variable scoring algorithm: 

The algorithm modifies the score of the AAC using the function f defined as follows: 
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Algorithm 1.1: Scoring Algorithm for Adjective Adverb Combination 

Thus, the resultant score of the AAC is the score of the adjective which is suitably adjusted 

with the effect of the adverb. 

b. Adjective priority scoring algorithm: 

 

They give priority to adjectives over the adverbs and modify the score of the adjective by a 

weight r. This weight r decides the extent to which an adverb influences the score of an 

adjective. 

c. Adverb priority scoring algorithm   

 

Topic-Oriented Features  

Bag-of-words and phrases are extensively used as features. But in many domains, individual 

phrase values bear little relation with overall text sentiment. A challenge in Sentiment 
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Analysis of a text is to exploit those aspects of the text which are in some way representative 

of the tone of the whole text. Often misleading phrases (thwarted expectations) are used to 

reinforce sentiments. Using bag-of-words or individual phrases will not be able to distinguish 

between what is said locally in phrases and what is meant globally in the text like drawing of 

contrasts between the reviewed entity and other entities, sarcasm, understatement, and 

digressions, all of which are used in abundance in many discourse domains. These features 

were developed by Turney et al. (2002). 

1 Semantic Orientation with PMI 

Semantic Orientation (SO) refers to a real number measure of the positive or negative 

sentiment expressed by a word or phrase. The value phrases are phrases that are the source of 

SO values. Once the desired value phrases have been extracted from the text, each one is 

assigned an SO value. The SO of a phrase is determined based upon the phrase’s pointwise 

mutual information (PMI) with the words”excellent” and”poor”. PMI is defined by Church 

and Hanks (1989) as follows: 

PMI(w1,w2)=log2(p(w1 & w2)/p(w1)p(w2)).  

The SO for a phrase is the difference between its PMI with the word”excellent” and its PMI 

with the word”poor.” i.e 

SO (phrase)=PMI (phrase,”excellent”)- PMI (phrase,”poor”) 

Intuitively, this yields values above zero for phrases with greater PMI with the 

word”excellent” and below zero for greater PMI with”poor”. A SO 

value of zero would indicate a completely neutral semantic orientation. 

 First Word Second Word Third Word (Not Extracted) 

1. JJ NN or NNS anything 

2. RB, RBR or RBS JJ not NN nor NNS 

3. JJ JJ not NN nor NNS 

4. NN or NNS JJ not NN or NNS 

5. RB, RBR or RBS VB, VBD, VBN or VBC anything 

Table 1.2: Phrase Patterns Used for Extracting Value Phrases - Turney (2002) 

 



16 
 

Osgood semantic differentiation with WordNet 

WordNet relationships are used to derive three values pertinent to the emotive meaning of 

adjectives. The three values correspond to the potency (strong or weak), activity (active or 

passive) and the evaluative (good or bad) factors introduced in Charles Osgood’s Theory of 

Semantic Differentiation (Osgood et al., 1957). These values are derived by measuring the 

relative minimal path length (MPL) in WordNet between the adjective in question and the 

pair of words appropriate for the given factor. In the case of the evaluative factor (EVA) for 

example, the comparison is between the MPL between the adjective and”good” and the MPL 

between the adjective and”bad”. The values can be averaged over all the adjectives in a text, 

yielding three real valued feature values for the text. 

“Sentiment expressed with regard to a particular subject can best be identified with reference 

to the subject itself”,  Natsukawa and Yi (2003). 

In some application domains, it is known in advance what the topic is toward which sentiment 

is to be evaluated. This can be exploited by creating several classes of features based upon the 

SO values of phrases given their position in relation to the topic of the text. In opinionated 

texts there is generally a single primary subject about which the opinion is favorable or 

unfavorable. But secondary subjects are also useful to some extent. 

Ex: Opinion (reference) to author in a book review may be useful in a book review. 

Ex: In a product review, the attitude towards the company which manufactures the product 

may be pertinent.  

The work considers the following classes of features: 

a. Turney Value  

The average value of all value phrases’ SO values for the text 

b. In sentence with THIS WORK  

The average value of all value phrases which occur in the same sentence as a reference to the 

work being reviewed 

c. Following THIS WORK  

The average value of all value phrases which follow a reference to the work being reviewed 

directly, or separated only by the copula or a preposition 

d. Preceding THIS WORK  
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The average value of all value phrases which precede a reference to the work being reviewed 

directly, or separated only by the copula or a preposition 

e. In sentence with THIS ARTIST 

With reference to the artist 

f. Following THIS ARTIST  

With reference to the artist 

g. Preceding THIS ARTIST  

With reference to the artist 

h. Text-wide EVA  

The average EVA value of all adjectives in a text 

i. Text-wide POT  

The average POT value of all adjectives in a text 

j. Text-wide ACT  

The average ACT value of all adjectives in a text 

k. TOPIC-sentence EVA  

The average EVA value of all adjectives which share a sentence with the topic of the text 

l. TOPIC-sentence POT  

The average POT value of all adjectives which share a sentence with the topic of the text 

m. TOPIC-sentence ACT  

The average ACT value of all adjectives which share a sentence with the topic of the text 

 MACHINE LEARNING APPROACHES 1.5

In his work, Pang Lee et al. (2002, 2004), compared the performance of Naïve Bayes, 

Maximum Entropy and Support Vector Machines in SA on different features like considering 

only unigrams, bigrams, combination of both, incorporating parts of speech and position 

information, taking only adjectives etc. The result has been summarized in the Table 1.3. 

It is observed from the results that: 

a. Feature presence is more important than feature frequency. 

b. Using Bigrams the accuracy actually falls. 

c. Accuracy improves if all the frequently occurring words from all parts of speech are 

taken, not only Adjectives. 
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d. Incorporating position information increases accuracy. 

e. When the feature space is small, Naïve Bayes performs better than SVM. But SVM’s 

perform better when feature space is increased. 

When feature space is increased, Maximum Entropy may perform better than Naïve Bayes but 

it may also suffer from overfitting. 

Features N umber of 
Features 

Frequency or 
Presence? 

NB ME SVM 

Unigrams 16165 Freq. 78.7 N/A 72.8 

Unigrams 16165 Pres. 81.0 80.4 82.9 

Unigrams+bigrams 32330 Pres. 80.6 80.8 82.7 

Bigrams 16165 Pres. 77.3 77.4 77.1 

Unigrams+POS 16695 Pres. 81.5 80.4 81.9 

Adjectives 2633 Pres. 77.0 77.7 75.1 

Top 2633 unigrams 2633 Pres. 80.3 81.0 81.4 

Unigrams+position 22430 Pres. 81.0 80.1 81.6 

Table 1.3: Accuracy Comparison of Different Classifiers in SA on Movie Review Dataset 

Bikel et al. (2007) implemented a Subsequence Kernel based Voted Perceptron and compares 

its performance with standard Support Vector Machines. It is observed that as the number of 

true positives increase, the increase in the number of false positives is much less in 

Subsequence Kernel based voted Perceptrons compared to the bag-of-words based SVM’s 

where the increase in false positives with true positives is almost linear. Their model, despite 

being trained only on the extreme one and five star reviews, formed an excellent continuum 

over reviews with intermediate star ratings, as shown in the figure below. The authors 

comment that “It is rare that we see such behavior associated with lexical features which are 

typically regarded as discrete and combinatorial. Finally, we note that the voted perceptron is 

making distinctions that humans found difficult…”. 
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Figure 1.1: Ratio of True Positives and False Positives using Subsequence Kernel based 

Voted Perceptrons 

 

Figure 1.2: Ratio of True Positives and False Positives using Bag-of-Features SVM 
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Figure 1.3: Distribution of Voted Perceptron Model Scores by Number of Stars 

Pande, Iyer et al. performs a detailed comparison of the different classifiers in two phases 

under two settings. In phase 1, the classifiers are made to distinguish between subjective and 

objective documents. In phase 2, the classifiers are made to classify positive from negative 

documents filtered by phase 1. In each phase classifiers have been tested without and with 

boosting to enhance performance. The classifiers tested are Bayesian Logistic Regression 

(BLR) with Gaussian and Laplacian prior, Naïve Bayes, Support Vector Machines with linear, 

polynomial and radial basis functions kernels and Voted Perceptrons. 

Classifier Avg F1 Avg Acc. Max Acc. 

Naïve Bayes 0.4985 78.66 81.55 

SVM(Linear) 0.4700 80.83 83.42 

SVM(Poly) 0.4536 79.71 81.97 

SVM(RBF) 0.0864 78.05 79.4 

Voted Perceptron 0.4300 78.64 83.66 
Table 1.4: Accuracy Comparison of Different Classifiers, without Boosting (Skewed Dataset) 

Classifier Avg F1 Avg Acc. Max Acc. 

BLR(Gauss) 0.515 80.09 85.51 

BLR(Laplace) 0.510 79.98 87.04 

Naïve Bayes 0.563 75.63 84.18 

SVM(Linear) 0.557 80.2 85.44 

SVM(Poly) 0.499 79.22 83.37 

Voted Perceptron 0.508 78.70 83.62 
Table 1.5: Accuracy Comparison of Different Classifiers, with Boosting (Skewed Dataset) 
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Classifier Avg F1 Avg Acc. Max Acc. 

Naïve Bayes 0.882 83.91 84.80 

SVM(Linear) 0.880 83.29 85.736 

SVM(Poly) 0.8571 80.80 82.946 

SVM(RBF) 0.757 68.22 74.573 

Voted Perceptron 0.875 82.96 85.43 
Table 1.6: Accuracy Comparison of Different Classifiers, without Boosting  

(Balanced Dataset) 

In phase 1, it is observed that: 

1. Accuracy very high but F1 scores are low due to skewed data (number of objective 

samples were 10,000 whereas number of polar samples were 25000) due to which either 

recall is low or false-positive rate is considerably high. 

2. Without boosting, undersampling or oversampling maximum recall attained was 65%. 

3. Lowest recall was attained for feature based on Gain Ratio and/or SVM with RBF kernel. 

4. With boosting highest recall attained was 85% with false negative rate 30%. 

5. Naïve Bayes and  SMO gave the best recall. 

6. Voted Perceptrons, BLR gave less than 65% recall 

7. Voted Perceptrons and SVM(linear) give the best accuracy. 

8. It is astonishing to see SVM(RBF) give the lowest accuracy. The reason may be 

overfitting. 

In phase 2, it is observed that: 

1. SVM with RBF again performs badly. 

2. SVM (linear) and Voted Perceptrons again have the best accuracy. They are found to give 

good results with both Information gain, Chi-Square feature selection methods. 

3. Naïve Bayes favors Chi-Square over Information Gain. 

4. Boosting does not improve performance much. 

Mullen et al. (2004) used Support Vector Machines with diverse information measures by 

using features like the PMI, Lemma, Turney, Osgood values along with other topic oriented 

features. 

It is observed that: 

1. Using only Turney values, a high accuracy can be achieved. 

2. The addition of Osgood values does not seem to yield improvement in any of the models. 

3. Using only Lemmas instead of Unigrams result in a much better performance. 
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4. The inclusion of all PMI values with lemmas outperforms the use of only the Turney 

values, suggesting that the incorporation of the available topic relations is helpful. 

5. The best performance is achieved by using Lemmas and PMI or Osgood Values. 

Model  5 folds  10 folds  20 folds  100 folds 
Turney Values only  72% 73% 72% 72% 
All (THIS WORK and THIS ARTIST) PMI  70% 70% 68% 69% 
THIS WORK PMI  72% 69% 70% 71% 
All Osgood  64% 64% 65% 64% 
All PMI and Osgood  74% 71% 74% 72% 
Unigrams  79% 80% 78% 82% 
Unigrams, PMI, Osgood  81% 80% 82% 82% 
Lemmas  83% 85% 84% 84% 
Lemmas and Osgood  83% 84% 84% 84% 
Lemmas and Turney  84% 85% 84% 84% 
Lemmas, Turney, text wide Osgood  84% 85% 84% 84% 
Lemmas, PMI, Osgood  84% 85% 84% 86% 
Lemmas and PMI  84% 85% 85% 86% 
Hybrid SVM (PMI/Osgood and Lemmas)  86% 87% 84% 89% 
Table 1.7: Accuracy Comparison of Different Features on SVM using a Linear Kernel 

 COGNITIVE APPROACHES (DISCOURSE) 1.6

1.6.1 What is Subjectivity Analysis, Perspective and Narratives? 

The input to the Sentiment Classifier is always an opinionated text i.e. a text containing 

positive or negative sentiment. Thus one needs to filter out objective facts from a text and 

subject only the opinions to the Sentiment Classifier. This work of extracting or filtering out 

the objective facts from subjective opinions is called Subjectivity Analysis. 

 A piece of text often contains other person’s point of view or accounts from a third 

person which contain a gamut of emotions or opinions from different characters or 

perspectives. Thus it is important to identify the character to who an opinion can be attributed 

to. Thus the objective here is not only to detect whether a piece of text is opinionated or not 

but also who is responsible for that opinion.  

 A narrative is a story that is created in a constructive format. It describes a sequence 

of fictional and non-fictional events. A narrative can also be told by a character within a larger 

narrative. It is the fiction-writing mode whereby the narrator communicates directly to the 

reader.  

A perspective is the point of view. Narrative is told from the perspective of one or more of its 

characters. It can also contain passages not told from the perspective of any character. 
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Subjective sentences portray a character’s thoughts – represented thoughts or present a scene 

perceived by the character – represented perception, private state such as seeing, wanting or 

feeling ill – that is some perceptual, psychological or experiential state not open to objective 

observation or verification. 

 Objective sentences present the story directly, rather than through thoughts or 

perceptions of a character. 

Thus subjective sentences take a character’s psychological point of view or POV (Uspensky 

1973). For narrative understanding it is absolutely essential to track the POV as it 

distinguishes between beliefs of characters and facts of the story. 

1.6.2 Discourse-Level Analysis 

But in order to identify the character and its perspective a sentence level analysis will not do. 

This demands a discourse level analysis as the sentences are not always explicitly marked by 

subjective elements and the subjective sentences do not directly imply the subjective 

character, Wiebe et al. (1991). 

Example: [1.1]He wanted to talk to Dennys.  [1.2]How were they going to be able to get 

home from this strange desert land into which they had been cast and which was heaven knew 

where in all the countless solar systems in all the countless galaxies? [L'Engle, Many Waters, 

p. 91] 

Sentence (1.2) is a represented thought, and (2.2) is a represented perception, presenting what 

the character sees as he sees it, yet neither is explicitly marked as such. Also, neither indicates 

who the subjective character is.  

Subjective Sentences which do no contain any subjective elements or subjective character 

appear in the midst of other subjective sentences attributed to the same subjective character. 

Thus subjectivity needs to be determined at discourse level. Instead of subjective or objective 

sentences we have subjective and objective contexts consisting of 1 or more subjective or 

objective sentences attributed to the same subjective character or objective sentences. 

 There are regularities in a way the author initiate, continue or resumes a character’s 

POV.  Certain combination of the sentence features (like tense, aspect, lexical items 

expressing subjectivity, identity of actors or experiencers of those states of affairs) and the 

current context (like whether the previous sentence was subjective or objective or whether 

there was a scene break or paragraph break) helps in detecting the continuity of the POV of a 

character. 
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The POV tracking needs an extensive discourse analysis. For example, the use of a full noun 

when a pronoun would have sufficed denotes that change in POV has occurred. On the other 

hand use of anaphoric pronoun denotes continuity in current POV.   

 The private state reports of a character, that expresses whether the subjective character 

is ill or angry, can only be reported. Now, if”John was furious” is the subjective statement of 

a character Mary, it is only her represented thought or opinion about John. Thus the 

distinction between private state report and represented thought is essential for discourse 

processing. This is because, as the subjective character is always the subject of a private state 

report, pronouns can be used to refer him despite references to some other entity of same 

number and gender. But in a represented thought the referent of a pronoun can be someone in 

an earlier represented thought. 

Example: 

“Dwayne wasn’t sure what John was scared of. What in the arcade could scare a boy like 

that? He could see tear’s in John’s eyes. He could tell they were tears because …. Maybe that 

was why he was crying. 

 “I want to leave”, he said.” 

Here the last sentence is objective but the previous sentences are subjective sentences of 

Dwayne. ‘He’ in the last sentence refers to Dwayne even though John is the last previously 

mentioned entity. This suggests there is a change of POV and discourse analysis is required to 

detect it.  

1.6.3 Subjective Contexts 

Recognition of a subjective context requires the presence of linguistic signals. Wiebe et al. 

(1988) recognizes the following subjective signals.. 

a. Psychological Verbs, Actions, Adjectives and Perceptual Verbs 

1. Psychological verbs (e.g. 'think', 'wonder', 'realize', 'went') 

2. Perceptual verbs (e.g.. 'see', 'hear')  

3. Psychological adjectives (e.g., 'delighted', 'happy', 'jealous', 'scared')  

4. Psychological actions- (e.g.,”he smiled”,”she gasped”,”she winced” 

a. Subjective Elements  

1. Exclamations, which express emotions 

2. Questions, which express wonder 
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3. Epithets, such as 'the bastard', which express some qualification of the referent.  

4. Kinship terms, e.g., 'Daddy', 'Morn', and 'Aunt Margaret', which express a relationship to 

the referee.  

5. Evaluative adjectives, which express an attitude toward the referent, e.g., 'ghastly', 

'surprising', 'poor', and 'damned',  

6. Intensifiers such as 'too', 'quite', and 'so' are also evaluative 

7. Emphasizers like”really”,”just” 

b. More Subjective Elements 

1. Modal verbs of obligation, possibility, and necessity. For example, 'should‘  is a modal 

verb of obligation)  

2. content (or attitudinal) disjuncts which comment on the content of the utterance. For 

example,”likely', 'maybe', 'probably', and 'perhaps' express some degree of doubt 

3. Conjuncts, which comment on the connection between items. For example, 'anyhow', 

'anyway', 'still', and 'after all' express concession 

4. Uses of 'this', 'that', 'these', and 'those' that Robin Lakoff (1974) has identified as 

emotional deixis.  

In conversation, they are”generally linked to the speaker's emotional involvement in the 

subject-matter of his utterance” (Lakoff 1974: 347); in thlrd-person narrative, they are linked 

to the subjective character's emotional involvement in the subject matter of his thoughts or 

perceptions. 

Examples: 

[2.1]She [Hannah] winced as she heard them crash to the platform. 

[3.1]He could tell they were tears because his eyes were too shiny. Too round. 

[4.1]Jody managed a frail smile. [4.2]She was a little bit ashamed. [4.3] She should really try 

to be more cheerful for Aunt Margaret's sake. [4.4]After all, Aunt Margaret had troubles of 

her own--she was the mother of that ghastly Dill. 

In the above examples, the words in bold are subjective elements. The presence of a 

subjective element indicates the presence of a subjective character. 

1.6.4 Identifying a Subjective Character  

Subjective Character can sometimes be directly identified in a sentence (for example when 

there is a narrative parenthetical), Wiebe et al. (1990). 
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If it is not identifiable, then it is one of the 2 previously mentioned characters- 

1. the subjective character of the previous subjective sentence 

It either continues the POV of the subjective character or resumes it. 

2. actor of an action denoted by a previous objective sentence 

Examples:  

[5.1]Why, Jake,you lazy bean,” Augustus said, [5.2] and walked off. [5.3] Jake had a 

stubborn streak in him, [5.4]and once it was activated even Call could seldom do much with 

him. 

(5.3) and (5.4) represent the point of view of Augustus, the actor of an action denoted by a 

previous objective sentence, (5.1). But the last subjective character is Jake, so Augustus's 

point of view is initiated, not merely resumed or continued. 

 In order to identify the subjective character one needs to keep track of expected 

subjective characters encountered. However drastic spatial and temporal discontinuities can 

block the continuation or resumption of a character’s POV. 

Ex: scene break, paragraph break 

The subjective character may also be identified from a private-state sentence. It can be the 

experiencer of a private state sentence. Exception occurs when a subjective sentence is 

followed by a private state report without paragraph break where the experiencer is different 

from the subjective character. 

Example of a scene break: 

[6.l]Drown me?” Augustus said. [6.2] Why if' anybody had tried it, those girls would have 

clawed them to shreds.” [6.3] He knew Call was mad, [6.4] but wasn't much inclined to 

humor him. [6.5] It was his dinner table as much as Call's, [6.6] and if Call didn't like the 

conversation he could go to bed.  

 [6.7] Call knew there was no point in arguing. [6.8] That was what Augustus wanted: 

argument. [6.9] He didn’t really care what the question was, [6.10] and it made no great 

difference to him which side he was on. [6.11] He just plain loved to argue. 

Sentences (6.1)-(6.2) are Augustus's subjective sentences and (6.7)-(6.11) are Call's. So, (6.7) 

initiates a new point of view. It is a private-state sentence and the subjective character, Call, is 

the experiencer of the private state denoted. 
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Subjective character of a private state report is always the experiencer which can be directly 

determined from the sentence. But such cannot be said in case of a represented thought. If 

private-state report is indicated to be a represented thought, then subjective character is the 

expected subjective character. But an important aspect is the scope of the subjective element. 

Consider the following examples. 

[7.1] Japheth, evidently realizing that they were no longer behind him, turned around 

[7.2]and jogged back toward them, seemingly cool and unwinded. 

[8.1]Urgh! She) the [girl] thought. [8.2]How could the poor thing have married him in the 

first place? 

[8.3]Johnnie Martin could not believe that he was seeing that old bag's black eyes sparkling 

with disgust and unsheathed contempt at him. 

Sentence (8.3) is a private-state report and the subjective character is the experiencer (Johnnie 

Martin). This is so even though (8.3) contains the subjective element 'old bag' and even 

though there is an expected subjective character (the girl) when it is encountered. Because 'old 

bag' appears within the scope of the private-state term 'believe', it is not considered in 

identifying the subjective character. On the other hand, the subjective clement 'evidently ' in 

(7.1) is not in the scope of 'realizing' (i.e., it is non-subordinated), so it can be used to identify 

the subjective character.

 

if the sentence contains a narrative parenthetical then  

 SC is the subject of the parenthetical 

else if the sentence is a private-state sentence then 

 if it has a non-subordinated subjective clement 

 or the text situation is continuing-subjective then 

  SC is identified from the previous context 

 else SC is the experiencer 

 end if 

else  

 SC is identified from the previous context 

end if 

 

Algorithm 1.2: To Identify the Subjective Character 
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if there are two expected subjective characters then 

 if the sentence is about the last active character then 

  SC is the last subjective character 

 else SC is the last active character 

 end if 

else if there is an expected subjective character then 

 SC is the expected subjective character 

else SC is unidentified 

end if 

 

Algorithm 1.3: To Identify the Subjective Character from Previous Context 

1.6.5 Identifying Perspective in Narrative 

A belief space is accessed by a stack of individuals. It consists of what the bottom member of 

the stack believes that what the top member believes. 

The reader is always the bottom member. The belief space corresponding to a stack consisting 

only of the reader contains the set of propositions that the reader believes are true. The CP 

determines the current belief space with respect to which references are understood. 

 

if 'X' is an indefinite noun phrase of the form 'a Y' then  

 create a new concept, N; build in CP's belief space the proposition that N is a Y; 

 return N 

else if 'X' is a definite noun phrase or proper name, 

 if a proposition that N is X can be found in the CP's belief space, 

  return N 

 else if a proposition that N is X can be found in a belief space other than the 

 CP's, then add the found proposition to the CP's belief space; 

  return N 

 else create a new concept, N; build in CP's belief space the proposition that N is X; 

return N 

 

Algorithm 1.4: Algorithm for Understanding a Non-Anaphoric, Specific Reference 'X' in 

Third-Person Narrative 
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If a reference is a subjective element, such as 'the bastard', it cannot be understood entirely 

propositionally, since it expresses subjectivity. How it should be understood depends on the 

particular subjective element. 

 It does not understand anaphoric references. However, anaphor comprehension can be 

affected by perspective.  

Examples: 

[9.1]The man had turned. [9.2]He started to walk away quickly in the direction of the public 

library. 

[9.3]”O.K.,” said Joe,”get Rosie.” 

[9.4]Zoe crept back to the blinker. [9.5]She felt hollow in her stomach. [9.6]She'd never 

really expected to see the Enemy again. [Ones], War Work, p. 64] 

'The Enemy' is an anaphoric reference that occurs in a subjective context (established by (9.5), 

which is a Psychological report). It co-specifies 'the man' in (9.1) and 'He' in (9.2). It reflects 

Zoe's belief that the man is an enemy spy, although it is not at all clear to the reader, at point' 

that he is. 

 Personal pronouns can also reflect the beliefs of a character. 

 Assertive indefinite pronouns ex. 'someone', 'something', ‘somebody’ refer to 

particular people, things, etc., without identifying them. When referring to a particular 

referent, a speaker typically uses an assertive indefinite pronoun if  

(1) she doesn't know the identity of the referent 

(2) She doesn't want the addressee to know the identity of the referent, or  

(3) she doesn't believe that the identity of the referent is relevant to the conversation.  

A character's thoughts end perceptions are not directed toward an addressee, and so the first of 

these uses is the predominant one in subjective contexts. 

Example:[10] Suddenly she [Zoe] gasped. She had touched somebody! [O’Neal, War Work, 

p. 129] 

There is no explicit statement in the novel that Zoe does not know whom she touched; this has 

to be inferred from the use of 'somebody'. 

 Definite references are used only if the speaker believes that the addressee has enough 

information to interpret them. Specific indefinite references are used in a subjective context 

when the referent is unfamiliar to the subjective character. However, the referent may not be 

unknown to the reader or to the other characters. 
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[11] There they [the King and his men] saw close beside them a great rubbleheap; and 

suddenly they were aware of two small figures lying on it at their ease, grey-clad, hardly to 

be seen among the stones. [Tolkien, The Two Towers, p. 206] 

The reader knows that the King and his men have come upon two hobbits, Merry end Pippin. 

The King and his men do not know the hobbits, but other characters also present in the scene 

do know them. When the King and his man are on the top of the CP (after 'saw' and continued 

by 'were aware of'), the hobbits are not referred to by name, but as 'two small figures'. Thus 

new referents are created and propositions are built in the belief space of the King and his 

men that they are small figures. The new referents can be asserted to be co-extensional with 

the concepts who the reader and other characters believe are named 'Merry' and 'Pippin'. 

1.6.6 Evaluation  

The algorithms were tested on 450 sentential input items (exclusive of paragraph and scene 

breaks) from each of two novels, Lonesome Dove by Larry McMurtry and The Magic of the 

Glits by Carole S. Adler. Lonesome Dove is an adult novel that has many subjective 

characters, and The Magic of the Glits is a children’s' novel that has one main subjective 

character. The input items are those of the complete sentences of every fifth page of these 

novels, starting in Lonesome Dove with page 176 and ending with page 236 (13 pages total), 

and starting in The Magic of the Glits with page 1 and ending with page 86 (18 pages total). 

(For each book, the first part of an additional page was used to make the number of input 

items exactly equal to 450.) Page 176 in Lonesome Dove is the beginning of a chapter in the 

middle of the novel. The earlier pages of the novel were considered during the development 

of the algorithm. 

Interpretation Actual Instances Primary 

Errors 

Incorrect Interpretations 

<subjective, x> 271/450 (60%) 20/271 (7%) 13 objective 

7 (subjective, y), y ≠ x 

Objective 179/450 (40%) 7/179 (4%) 7 (subjective, x) 

Objective, other than simple 

quoted speech 

54/450 (12%) 7/54 (13%) 7 (subjective, x) 

Table 1.8: Results for Lonesome Drove by Interpretation 
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Point-of-View Operation Actual Instances Primary 

Errors 

Incorrect Interpretations 

Continuation 215/450 (48%) 11/215 (5%) 1 initiation 

10 objective 

Resumption 20/450 (4%) 0/20 (0%) - 

Initiation 36/450 (8%) 9/36 (25%) 5 resumptions 

1 initiation 

3 objective 

Objective 179/450 (40%) 7/179 (4%) 4 continuations  

3 resumptions 

Objective, other than 

simple quoted speech 

54/450 (12%) 7/54 (13%) 4 continuations  

3 resumptions 

Table 1.9: Results for Lonesome Drove by Point-of-View Operation 

In Lonesome Dove, out of the 450 input items, the algorithm committed 27 primary errors 

(6%) and 28 secondary errors (6%). Many of the input items, 125 of them (28%), are simple 

items of quoted speech (i.e., they do not have potential subjective elements in the discourse 

parenthetical, or subordinated clauses outside the quoted string that have private-state terms, 

private-state-action terms, or potential subjective elements). 

 In Table 2.8, the first row, is interpreted as: Out of the 271 actual subjective sentences, 

the algorithm committed 20 primary errors. It interpreted 13 subjective sentences to be 

objective, and 7 to be the subjective sentence of the wrong subjective character. 

In Table 2.9, the first row, is interpreted as: Out of the 215 items that actually continue a 

character's point of view, the algorithm committed 11 primary errors. It interpreted 1 of them 

to be an initiation and 10 to be objective. Notice that the last column of the row for initiations 

includes an initiation. This means that for one actual initiation, the algorithm was correct that 

a character's point of view was initiated, but incorrect as to the identity of that character. 

Interpretation Actual Instances Primary Errors Incorrect Interpretations 

<subjective, x> 125/450 (28%) 12/125 (10%) 10 objective 

2 (subjective, y), y ≠ x 

Objective 325/450 (72%) 22/325 (7%) 22 (subjective, x) 

objective, other than simple 

quoted speech 

97/450 (22%) 22/97 (23%) 22 (subjective, x) 

Table 1.10: Results for The Magic of the Glits by Interpretation 
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Point-of-View Operation Actual Instances Primary 

Errors 

Incorrect Interpretations 

Continuation 79/450 (18%) 4/79 (5%) 4 objective 

Resumption 41/450 (9%) 7/41 (17%) 2 initiations 

5 objective 

Initiation 5/450 (1%) 1/5 (20%) 1 objective 

Objective 325/450 (72%) 22/325 (7%) 4 continuations  

9 resumptions 

9 initiations 

objective, other than simple 

quoted speech 

97/450 (22%) 22/97 (23%) 4 continuations  

9 resumptions 

9 initiations 

Table 1.11: Results for The Magic of the Glits by Point-of-View Operations 

In The Magic of the Glits, out of the 450 input items, the algorithm committed 34 primary 

errors (8%) and 21 secondary errors (5%). There are 228 items that are simple quoted speech 

(51%). Tables 2.10 and 11 present the kinds of results for this novel that were given above in 

Tables 2.8 and 2.9 for Lonesome Dove. 

 SENTIMENT ANALYSIS AT IIT BOMBAY 1.7

Balamurali et al. (2011) presents an innovative idea to introduce sense based sentiment 

analysis. This implies shifting from lexeme feature space to semantic space i.e. from simple 

words to their synsets. The works in SA, for so long, concentrated on lexeme feature space or 

identifying relations between words using parsing. The need for integrating sense to SA was 

the need of the hour due to the following scenarios, as identified by the authors: 

a. A word may have some sentiment-bearing and some non-sentiment-bearing senses 

b. There may be different senses of a word that bear sentiment of opposite polarity 

c. The same sense can be manifested by different words (appearing in the same synset) 

Using sense as features helps to exploit the idea of sense/concepts and the hierarchical 

structure of the WordNet. The following feature representations were used by the authors and 

their performance were compared to that of lexeme based features: 

a. A group of word senses that have been manually annotated (M) 

b. A group of word senses that have been annotated by an automatic WSD (I) 
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c. A group of manually annotated word senses and words (both separately as features) 

(Sense + Words(M)) 

d. A group of automatically annotated word senses and words (both separately as features) 

(Sense + Words(I)) 

Sense + Words(M) and Sense + Words(I) were used to overcome non-coverage of WordNet 

for some noun synsets.  

 The authors used synset-replacement strategies to deal with non-coverage, in case a 

synset in test document is not found in the training documents. In that case the target 

unknown synset is replaced with its closest counterpart among the WordNet synsets by using 

some metric. The metrics used by the authors were LIN, LESK and LCH.  

SVM’s were used for classification of the feature vectors and IWSD was used for automatic 

WSD. Extensive experiments were done to compare the performance of the 4 feature 

representations with lexeme representation. Best performance, in terms of accuracy, was 

obtained by using sense based SA with manual annotation (with an accuracy of 90.2% and an 

increase of 5.3% over the baseline accuracy) followed by Sense(M), Sense + Words(I), 

Sense(I) and lexeme feature representation. LESK was found to perform the best among the 3 

metrics used in replacement strategies. 

 One of the reasons for improvements was attributed to feature abstraction and 

dimensionality reduction leading to noise reduction.  The work achieved its target of bringing 

a new dimension to SA by introducing sense based SA. 

 Aditya et al. (2010) introduced Sentiment Analysis to Indian languages namely, Hindi. 

Though, much work has been done in SA in English, little or no work has been done so-far in 

Hindi. The authors exploited 3 different approaches to tackling SA in Hindi: 

1. They developed a sense annotated corpora for Hindi, so that any supervised classifier can 

be trained on that corpora. 

2. They translated the Hindi document to English and used a classifier trained in English 

documents to classify it. 

3. They developed a sentiment lexicon for Hindi called the Hindi SentiWordNet (H-SWN). 

The authors first tried to use the in-language classifier and if training data was not available, 

they settled for a rough Machine Translation of the document to resource-rich English. In case 

MT could not be done they used the H-SWN and used a majority voting approach to find the 

polarity of the document. 
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As expected, the classifier trained in in-language documents gave the best performance. This 

was followed by the MT system of converting the source document to English. One of the 

reasons for its degraded performance can be attributed to the absence of Word Sense 

Disambiguation, which led to a different meaning of the Hindi word in English after 

translation. The lexical resource based approach gave the worse performance amongst the 3 

approaches. This was mainly due to the coverage of the H-SWN which was quite low. 

 Aditya et al. (2010) took Sentiment Analysis to a new terrain by introducing it to 

micro-blogs namely, Twitter. They developed the C-Feel-It system that extracted posts called 

Tweets from the Twitter, related to the user query, and evaluated its sentiment based on 4 

lexical resources. Twitter is a very noisy medium where the user posts different forms of 

slangs, abbreviations, smileys etc. There is also a high occurrence of spams generated by bots. 

Due to these reasons, the accuracy of the system deteriorated mainly because the words in the 

post were not present in the lexical resources. However, the authors used some form of 

normalization to compensate somewhat for the inherent noise. They also used a slang and 

emoticon dictionary for polarity evaluation. The authors used the 4 lexical resources Taboada, 

Inquirer, SentiWordNet and Subjectivity Lexicon and settled for a majority voting for the final 

polarity of the tweet. This work is novel mainly because it exploits a new domain. 

 DISCOURSE SPECIFIC SENTIMENT ANALYSIS 1.8

Marcu (2000) discussed probabilistic models for identifying elementary discourse units at 

clausal level and generating trees at the sentence level, using lexical and syntactic information 

from discourse-annotated corpus of RST. Wellner et al. (2006) considered the problem of 

automatically identifying arguments of discourse connectives in the PDTB. They modeled the 

problem as a predicate-argument identification where the predicates were discourse 

connectives and arguments served as anchors for discourse segments. Wolf et al. (2005) 

present a set of discourse structure relations and ways to code or represent them. The relations 

were based on Hobbs (1985). They report a method for annotating discourse coherent 

structures and found different kinds of crossed dependencies. 

 In the work, Contextual Valence Shifters (Polanyi et al., 2004), the authors investigate 

the effect of intensifiers, negatives, modals and connectors that changes the prior polarity or 

valence of the words and brings out a new meaning or perspective. They also talk about pre-

suppositional items and irony and present a simple weighting scheme to deal with them.  
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Somasundaran et al. (2009) and Asher et al. (2008) discuss some discourse-based supervised 

and unsupervised approaches to opinion analysis. Zhou et al. (2011) present an approach to 

identify discourse relations as identified by RST. Instead of depending on cue-phrase based 

methods to identify discourse relations, they leverage it to adopt an unsupervised approach 

that would generate semantic sequential representations (SSRs) without cue phrases. 

Taboada et al. (2008) leverage discourse to identify relevant sentences in the text for 

sentiment analysis. However, they narrow their focus to adjectives alone in the relevant 

portions of the text while ignoring the remaining parts of speech of the text.  

 Most of these discourse based works make use of a discourse parser or a dependency 

parser to identify the scope of the discourse relations and the opinion frames. As said before, 

the parsers fare poorly in the presence of noisy text like ungrammatical sentences and spelling 

mistakes (Dey et al., 2009). In addition, the use of parsing slows down any real-time 

interactive system due to increased processing time. For this reason, the micro-blog 

applications mostly build on a bag-of-words model.  

 FEATURE SPECIFIC SENTIMENT ANALYSIS 1.9

Chen et al. (2010) uses dependency parsing and shallow semantic analysis for Chinese 

opinion related expression extraction. They categorize relations as, Topic and sentiment 

located in the same sub-sentence and quite close to each other (like rule “an adjective plus a 

noun” is mostly a potential opinion-element relation), Topic and sentiment located in adjacent 

sub-sentences and the two sub-sentences are parallel in structure (that is to say, the two 

adjacent sub-sentences are connected by some coherent word, like although/but, and etc), 

Topic and sentiment located in different sub-sentences, either being adjacent or not, but the 

different sub sentences are independent of each other, no parallel structures any more. 

 Wu et al. (2009) use phrase dependency parsing for opinion mining. In dependency 

grammar, structure is determined by the relation between a head and its dependents. The 

dependent is a modifier or complement and the head plays a more important role in 

determining the behaviors of the pair.  The authors want to compromise between the 

information loss of the word level dependency in dependency parsing as it does not explicitly 

provide local structures and syntactic categories of phrases and the information gain in 

extracting long distance relations. Hence they extend the dependency tree node with phrases.” 

 Hu et al. (2004) used frequent item sets to extract the most relevant features from a 

domain and pruned it to obtain a subset of features. They extract the nearby adjectives to a 
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feature as an opinion word regarding that feature. Using a seed set of labeled Adjectives, 

which they manually develop for each domain, they further expand it using WordNet and use 

them to classify the extracted opinion words as positive or negative.  

 Lakkaraju et al. (2011) propose a joint sentiment topic model to probabilistically 

model the set of features and sentiment topics using HMM-LDA. It is an unsupervised system 

which models the distribution of features and opinions in a review and is thus a generative 

model. 

 Most of the works mentioned above require labeled datasets for training their models 

for each of the domains. If there is a new domain about which no prior information is 

available or if there are mixed reviews from multiple domains inter-mixed (as in Twitter), 

where the domain for any specific product cannot be identified, then it would be difficult to 

train the models. The works do not exploit the fact that majority of the reviews have a lot of 

domain independent components. If those domain independent parameters are used to capture 

the associations between features and their associated opinion expressions, the models would 

capture majority of the feature specific sentiments with minimal data requirement. 

 SEMANTIC SIMILARITY METRICS 1.10

Various approaches for evaluating the similarity between two words can be broadly classified 

into two categories: edge-based methods and informationcontent-based methods. One of the 

earliest works in edge-based calculation of similarity is by Rada et al. (1989), where in, they 

propose a metric”Distance” over a semantic net of hierarchical relations as the shortest path 

length between the two nodes. This has been the basis for all the metrics involving simple 

edge-counting to calculate the distance between two nodes. However, the simple edge-

counting fails to consider the variable density of nodes across the taxonomy. It also fails to 

include relationships other than the is-a relationship, thus, missing out on important 

information in a generic semantic ontology, like WordNet.  

 In contrast to edge-based methods, Richardson et al. (1994) and Resnik (1995a) 

propose a node-based approach to find the semantic similarity. They approximate conceptual 

similarity between two WordNet concepts as the maximum information content among 

classes that subsume both the concepts. Resnik (1995b) advanced this idea by defining the 

information content of a concept based on the probability of encountering an instance of that 

concept. Alternatively, Wu & Palmer (1994) compare two concepts based on the length of the 

path between the root of the hierarchy and the least common subsumer of the concepts.  
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Jiang & Conrath (1997) and Leacock et al. (1998) combine the above two approaches by 

using the information content as weights for the edges between concepts. They further 

reinforce the definition of information content of a concept by adding corpus statistical 

information.  

 Instead of measuring the similarity of concepts, some other approaches measure their 

relatedness. Hirst & St-Onge (1997) introduce an additional notion of direction along with the 

length of paths for measuring the relatedness of two concepts. Banerjee & Pedersen (2003) 

and Patwardhan (2003) leverage the gloss information present in WordNet in order to 

calculate the relatedness of two concepts. Banerjee & Pedersen (2003) assigns relatedness 

scores based on the overlap between the gloss of the two concepts. Patwardhan (2003) use a 

vector representation of the gloss, based on the context vector of the terms in the gloss. The 

relatedness is then the cosine between the gloss vectors of the two concepts.  

 Our work is most related to the work of Wan & Angryk (2007) which improves on 

Banerjee & Pedersen (2003) and Patwardhan (2003) by including relations other than the is-a 

relationship. They use an extended gloss definition for a concept which is defined as the 

original gloss appended by the gloss of all the concepts related to the given concept. They 

create concept vectors for each sense based on which they create context vectors which are an 

order higher to the concept vectors. Finally, they use cosine of the angle between the vectors 

of the different concepts to find their relatedness. This approach is better than other 

approaches as it captures the context of the concepts to a much larger extent. However, all 

these methods lack on a common ground. They fail to incorporate sentiment information in 

calculating the similarity/relatedness of two concepts. We postulate that sentiment 

information is crucial in finding the similarity between two concepts. 

 SENTIMENT ANALYSIS IN TWITTER 1.11

Twitter is a micro-blogging website and ranks second amongst the present social media 

websites (Prelovac 2010). A micro-blog allows users to exchange small elements of content 

such as short sentences, individual pages, or video links. Alec et al. (2009) provide one of the 

first studies on sentiment analysis on micro-blogging websites. Barbosa et al. (2010) and 

Bermingham et al. (2010) both cite noisy data as one of the biggest hurdles in analyzing text 

in such media. Alec et al. (2009) describes a distant supervision-based approach for sentiment 

classification. They use hashtags in tweets to create training data and implement a multi-class 

classifier with topic-dependent clusters. Barbosa et al. (2010) propose an approach to 
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sentiment analysis in Twitter using POS-tagged n-gram features and some Twitter specific 

features like hashtags. Our system is inspired from C-Feel-IT, a Twitter based sentiment 

analysis system (Joshi et al., 2011). However, our system is an enhanced version of their rule 

based system with specialized modules to tackle Twitter spam, text normalization and entity 

specific sentiment analysis.  

To the best of our knowledge, there has not been any specific work regarding spam filtering 

for tweets in the context of sentiment analysis. General spam filtering techniques include 

approaches that implement Bayesian filter (Sahami, 1998; Graham, 2006), or SVM-based 

filters along with various boosting algorithms to further enhance the accuracies (Drucker et 

al., 1999).  

 Twitter is a very noisy medium. However, not much work has been done in the area of 

text normalization in the social media especially pertaining to Twitter. But there has been 

some work in the related area of SMS-es. Aw et al., (2006) and Raghunathan et al., (2009) 

used a MT-based system for text normalization. Choudhury et al., (2007) deployed a HMM 

for word-level decoding in SMS-es; while Catherine et al., (2008) implemented a 

combination of both by using two normalization systems: first a SMT model, and then a 

second model for speech recognition system. Another approach to text normalization has been 

to consider each word as a corrupt word after being passed through a noisy channel, which 

essentially boils down to spell-checking itself. Mayes (1991) provide one such approach. 

Church et al., (1991) provide a more sophisticated approach by associating weights to the 

probable edits required to correct the word.  

 We follow the approach of Church et al., (1991) and attempt to infuse linguistic rules 

within the minimum edit distance (Levenstein, 1966). We adopt this simpler approach due to 

the lack of publicly available parallel corpora for text normalization in Twitter.  

 Unlike in Twitter, there has been quite a few works on general entity specific 

sentiment analysis. Nasukawa et al., (2003) developed a lexicon and sentiment transfer rules 

to extract sentiment phrases. Mullen et al., (2004) used Osgood and Turney values to extract 

value phrases, i.e. sentiment bearing phrases from the sentence. Many approaches have also 

tried to leverage dependency parsing in entity-specific SA. Mosha (2010) uses dependency 

parsing and shallow semantic analysis for Chinese opinion related expression extraction. Wu 

et al., (2009) used phrase dependency parsing for opinion mining. Mukherjee et al. (2012) 

exploit dependency parsing for graph based clustering of opinion expressions about various 

features to extract the opinion expression about a target feature. We follow a dependency 
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parsing based approach for entity specific SA as it captures long distance relations, syntactic 

discontinuity and variable word order, as is prevalent in Twitter. 

 The works (Alec et al., 2009; Read et al., 2005; Pak et al., 2010; Gonzalez et al. 

(2011)) evaluate their system on a dataset crawled and auto-annotated based on emoticons, 

hashtags. We show, in this work, that a good performance on such a dataset does not ensure a 

similar performance in a general setting. 

 EXTRACTIVE SUMMARIZATION 1.12

There are 2 prominent paradigms in automatic text summarization (Das et al., 2007): 

extractive and abstractive text summarization. While extractive text summarization attempts 

to identify prominent sections of a text by giving more emphasis on the content of the 

summary, abstractive text summarization gives more emphasis on the form so that sentences 

are syntactically and semantically coherent. The topic-driven summarization paradigm is 

more common to IR where the summary content is based on the user query about a particular 

topic. Luhn (1958) attempts to find the top-ranked significant sentences based on the 

frequency of the content words present in it. Edmundson (1969) gives importance to the 

position of a sentence i.e. where the sentence appears in the text and comes up with an 

optimum position policy and emphasis on the cue words. Aone et al. (1999) use tf-idf to 

retrieve signature words, NER to retrieve tokens, shallow discourse analysis for cohesion and 

also use synonym and morphological variants of lexical terms using WordNet. Lin (1999) 

uses a rich set of features for the creation of feature vector like Title, Tf & Tf-Idf scores, 

Position score, Query Signature, IR Signature, Sentence Length, Average Lexical 

Connectivity, Numerical Data, Proper Name, Pronoun & Adjective, Weekday & Month, 

Quotation, First Sentence etc. and use decision tree to learn the feature weights. There are 

other works based on HMM (Conroy et al., 2008), RTS (Marcu, 1998), lexical chain and 

cohesion (Barzilay et al., 1997).  

 SUBJECTIVITY ANALYSIS 1.13

Yu et al. (2003) propose to find subjective sentences using lexical resources where the authors 

hypothesize that subjective sentences will be more similar to opinion sentences than to factual 

sentences. As a measure of similarity between two sentences they used different measures 

including shared words, phrases and the WordNet. Potthast et al. (2010) focus on extracting 
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top sentiment keywords which is based on Pointwise Mutual Information (PMI) measure 

(Turney, 2002). 

 The pioneering work for subjectivity detection is done in (Pang et al., 2004), where 

the authors use min-cut to leverage the coherency between the sentences. The fundamental 

assumption is that local proximity preserves the objectivity or subjectivity relation in the 

review. But the work is completely supervised requiring two levels of tagging. Firstly, there is 

tagging at the sentence level to train the classifier about the subjectivity or objectivity of 

individual sentences. Secondly, there is tagging at the document level to train another 

classifier to distinguish between positive and negative reviews. Hence, this requires a lot of 

manual effort. Alekh et al. (2005) integrate graph-cut with linguistic knowledge in the form of 

WordNet to exploit similarity in the set of documents to be classified. 

 CONCEPT EXPANSION USING WIKIPEDIA 1.14

Wikipedia is used in a number of works for concept expansion in IR, for expanding the query 

signature (Muller et al., 2009; Wu et al., 2008; Milne et al., 2007) as well as topic driven 

multi document summarization (Wang et al., 2010).  

 There has been a few works in sentiment analysis using Wikipedia (Gabrilovich et al., 

2006; Wang et al., 2008). Gabrilovich et al. (2006) focus on concept expansion using 

Wikipedia where they expand the feature vector constructed from a movie review with related 

concepts from the Wikipedia. This increases accuracy as it helps in unknown concept 

classification due to expansion but it does not address the concern of separating subjective 

concepts from objective ones. 

 These works do not take advantage of the Ontological and Sectional arrangement of 

the Wikipedia articles into categories. Each Wikipedia movie article has sections like Plot, 

Cast, Production etc. which can be explicitly used to train a system about the different aspects 

of a movie. In this work, our objective is to develop a system that classifies the opinionated 

extractive summary of the movie, requiring no labeled data for training; where the summary is 

created based on the extracted information from Wikipedia. 

 CONCLUSIONS 1.15

This report discusses in details the various approaches to Sentiment Analysis, mainly Machine 

Learning and Cognitive approaches. It provides a detailed view of the different applications and 

potential challenges of Sentiment Analysis that makes it a difficult task.  
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We have seen the applications of machine learning techniques like Naïve Bayes, Maximum Entropy, 

Support Vector Machines and Voted Perceptrons in SA and their potential drawbacks. As all of these 

are bag-of-words model, they do not capture context and do not analyze the discourse which is 

absolutely essential for SA. We have also seen the use of Subsequence Kernels in Voted Perceptrons 

that is somewhat successful to capture context as a result of which it achieves a high accuracy. Also it 

achieves the difficult task of performing prediction over a continuum even though trained only on the 

extreme reviews. Thus machine learning models with a proper kernel that can capture the context will 

play an important role in SA.  

 Feature engineering, as in several Machine Learning and Natural Language Processing 

applications, plays a vital role in SA. We have seen the use of phrases as well as words as features. It 

has been seen that Adjectives as word features can capture majority of the sentiment. Use of topic-

oriented features and Value Phrases play a significant role to detect sentiment when the domain of 

application is known. It is also seen that use of lemmas capture sentiment better than using unigrams. 

 We have also discussed in details the application of Cognitive Psychology in SA. The reason 

why it is absolutely essential for SA is for its power of analyzing the discourse. Discourse analysis, as 

we have seen, plays a significant role in detecting sentiments. The use of discourse analysis and 

tracking point of view are necessary for analyzing opinions in blogs, newspaper and articles where a 

third person narrates his/her views. 

 We also discus some specific topics in Sentiment Analysis and the contemporary works in 

those areas. 
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