Domain Cartridge: Unsupervised Framework for Shallow
Domain Ontology Construction from Corpus

Subhabrata Mukherjeet

Jitendra Ajmera

Sachindra Joshit

fMax Planck Institute for Informatics, *IBM India Research Lab
smukherjee@mpi-inf.mpg.de, jajmeral@in.ibm.com, jsachind@in.ibm.com

ABSTRACT

In this work we propose an unsupervised framework to construct
a shallow domain ontology from corpus. It is essential for Infor-
mation Retrieval systems, Question-Answering systems, Dialogue
etc. to identify important concepts in the domain and the relation-
ship between them. We identify important domain terms of which
multi-words form an important component. We show that the incor-
poration of multi-words improves parser performance, resulting in
better parser output, which improves the performance of an existing
Question-Answering system by upto 7%. On manually annotated
smartphone dataset, the proposed system identifies 40.87% of the
domain terms, compared to 22% recall obtained using WordNet,
43.77% by Yago and 53.74% by BabelNet respectively. However,
it does not use any manually annotated resource like the compared
systems. Thereafter, we propose a framework to construct a shal-
low ontology from the discovered domain terms by identifying four
domain relations namely, Synonyms (‘similar-to’), Type-Of (‘is-
a’), Action-On (‘methods’) and Feature-Of (‘attributes’), where we
achieve significant performance improvement over WordNet, Ba-
belNet and Yago without using any mode of supervision or manual
annotation.

Categories and Subject Descriptors

H.O [Information Systems]: General

General Terms

Knowledge Extraction, Ontologies

Keywords

Ontology; Unsupervised Framework; Relation Extraction; Distri-
butional Similarity

1. INTRODUCTION

An ontology can be viewed as a data structure that specifies
terms, their properties and relations among them for a richer knowl-
edge representation [47]. Such a knowledge representation makes
an information retrieval system aware of a domain, so that it can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.
CIKM 14, November 03 - 07 2014, Shanghai, China

Copyright 2014 ACM 978-1-4503-2598-1/14/11$15.00.
http://dx.doi.org/10.1145/2661829.2662087.

capture domain concepts and associations well, to perform tasks
like answering queries, conducting dialogue more efficiently. We
show that a domain-aware Question-Answering system can have a
7% boost in recall by just knowing the multi-word domain terms
(like ‘Samsung Galaxy S IV’, ‘Sony Experia’).

In this work, we present a framework to automatically construct
a shallow domain ontology from a set of knowledge articles and
pdf manuals in a given domain. We view this domain ontology as
a graph, where the nodes are domain concepts and the edges depict
relations among these concepts. Figure 1 shows a snapshot of a
smartphone domain ontology, with the important domain concepts
as nodes and a set of relations among these concepts as directed
edges. The relations include the most commonly used Type-Of or
hyponymy relation (denoted as the edge label 1), Feature-Of (de-
picted as the label F', e.g. ‘operating-system’ is a feature of ‘de-
vice’), Action-On (depicted as the label A, e.g. ‘install’ is an action
on ‘operating-system’) and Synonym (depicted as the label S, e.g.
‘device’ is synonymous to ‘handset’). Although, there may be more
fine-grained relations possible in a given domain (e.g. temporal,
spatial), we believe that these four relations are common across do-
mains and can be used to represent domain knowledge efficiently,
as in an object oriented programming methodology (e.g. JAVA)
where ‘objects’ are defined to have a set of ‘attributes’ (features
F), ‘methods’ (actions A) and ‘superclasses’ (type T).

QU
3
o
S
=X
g
m
4
oS
S 0
8=
T o
ml‘"
3 5
«Q

S

Samsung
Galaxy
victory

.S, =
Samsung
array

Figure 1: An example ontology from the smartphone domain.

At first we are interested in discovering the important concepts
in a given domain, of which multi-word terms form an important
component (a task referred to as Domain Term Discovery (DTD)
in this work). Incorporation of such domain terms can improve a
parser’s performance. The following example depicts the utility of
the DTD process for a parser. Consider the string “transfer files via
USB cable". First, the DTD process allows the tokenizer to recog-
nize ‘USB-cable’ as a single token. Secondly, the domain knowl-
edge that ‘files’ is typically a noun in the smartphone domain and

not a verb, leads to a correct and complete parse of the string. Since
these steps are the basic building blocks of a Question-Answering
system [10, 13], we show that its performance can be improved by
improving the parser performance.

Thereafter, we want to determine the relations between the dis-
covered domain terms (referred to as Domain Relation Discovery
(DRD) in this work). We show that once the parser becomes aware
of the domain concepts in the first phase, it generates refined out-
put, in terms of better parser relations, which helps in the DRD
process. The discovered relations can be used for query expan-
sion (e.g. by considering Synonyms along with the original query),
interactive dialogue systems (e.g. for the user query “the battery
of my device depletes very fast", a DRD inference that ‘battery’
is a Feature-Of ‘phone’ as well as a ‘tablet’ device - enables the
system to clarify about the type of device). Similarly, Type-Of re-
lations can help in query re-formulation. E.g. for the user query
“screen freezes E5150", the DRD inference that ‘E5150’ is a type-
of ‘Error’ can result in the query re-formulation “screen freezes
error E5150". Query re-formulation improves the performance of
Question- Answering system by increasing its recall.

Overall we focus on discovering all the domain concepts and
relations efficiently in an automated way, and construct a shallow
domain ontology. Our work differs in the ontology construction
process from related works [49, 16] in the usage of an unsuper-
vised framework for ontology generation, domain term and relation
discovery, where we do not make use of any manually created re-
source such as WordNet [32], Wikipedia [50], ConceptNet [18] or
other readily available ontologies [49].

An issue with such manually created resources with annotations
is that they mostly contain generic concepts and miss out on many
domain specific concepts and associated relations. In addition to
the labor cost involved in constructing such resources, they are not
updated frequently and as a result lack the newly coined concepts in
the domain (e.g. ‘HTC Desire’, ‘Nokia Lumia 1020’). On the other
hand our system extracts domain concepts and relations from tuto-
rials and manuals in a given domain, which are readily available,
that creates a richer knowledge representation. As the approach
is unsupervised, requiring no manual annotation, human labor in
creating and maintaining the ontology is markedly reduced.

We compare our approach to other state-of-the-art systems like
BabelNet [36] and Yago [48]. These systems harvest knowledge
from manually created resources like WordNet and Wikipedia. Yago
and BabelNet perform better than our system in domain-term dis-
covery with a recall of 43.77% and 53.74% respectively. Although
our system obtains 40.87% recall in discovering domain terms, it
does not make use of any world knowledge or human annotated re-
source. On the other hand, we perform much better than BabelNet,
WordNet and Yago in discovering domain relations. For instance,
WordNet, BabelNet and Yago do not give Feature-Of or Action-On
relations. Our system significantly outperforms them on relations
available to all the systems.

2. OVERVIEW OF OUR FRAMEWORK

In this section we give a high level overview of the proposed Do-
main Cartridge framework (refer to Figure 2). The input to the sys-
tem is a corpus consisting of knowledge articles, manuals, tutorials
etc. in a variety of formats in a given domain. Suitable adaptors are
then used to bring the information in plain text form such that the
documents can be parsed by a slot grammar parser (ESG) [30].

The ESG parser is used due to its speed. It is 50 — 100 times
faster than the Charniak parser [7]. Simple transformations over
the ESG parser output and encoding alternate variants of common
expressions provide Shallow Semantic Relationship (SSR) (referred

Corpus ESG Prismatic
Parser "| Relations

Random Secondary Primary

Index Index Index
Domain
Terms HITS
| I,| Synonym Type-Of Feature-Of Action-On
Extractor Extractor Extractor Extractor
Domain
"| Ontology

Figure 2: Our framework: Domain Cartridge.

to as Prismatic in Figure 2) annotations. A detailed discussion on
the types and constituents of these relations is presented in [10].

The first phase consists of discovering important domain terms,
referred to as Domain Term Discovery (DTD) in this work (refer
to Section 3). In this phase, domain multi-words are discovered
using noun phrase chunking on the parser output, which is used
to bootstrap the parser. This results in the parser generating better
SSR as it becomes domain-aware.

The Lucene index called the Primary Index contains all SSR and
associated concepts in the corpus. The Secondary Lucene Index
created from the primary index bears only unique SSR. The indices
provide easy access to all SSR, concepts and documents in corpus
to incrementally build the Domain Cartridge, as well as help in
scalability. During domain migration, only primary index needs to
be changed as other indices are derived from it. Section 4 discusses
the index construction process in details.

To discover more fine-grained multi-word concepts and relations,
HITS algorithm [23] is used over the now-refined parser output (re-
fer to Section 4.4), after the noun phrase chunking process. The
newly discovered domain terms by HITS are incorporated in the
parser lexicon, further enriching it. The parser is run again to gener-
ate better relations, and previous steps are iterated till convergence.
The HITS algorithm takes its input from the secondary index.

In order to identify similar domain concepts, a dimensionality re-
duction technique called Random Indexing [45] is used leveraging
relational distributional similarity of the candidate concepts (refer
to Section 4.3). The Random Index is created out of the secondary
index containing similar neighbors for a concept.

The output of HITS and Random Index is used to discover re-
lations between the domain terms (referred to as Domain Relation
Discovery or DRD in this work; refer to Section 5). A classifier is
built for each of the 4 relation types, which takes as input a word
pair and uses SSR features to predict the relation type existing be-
tween them.

3. DOMAIN TERM DISCOVERY (DTD)

The first step in gathering insight about a new domain is to dis-
cover a list of important domain concepts. For example, in the
smartphone domain, terms like ‘Samsung-Galaxy-Tab’, ‘Call-log’,
‘Call-forwarding’, ‘4g-connection’ can be considered important con-
cepts. Similarly in a finance domain, terms like ‘Company’, ‘Trans-
action’, ‘Sales-Tax’ etc. can be considered as domain terms.

An important characteristic feature of domain terms are the multi-
word tokens. In one of the experiments, with a manually designed
list of financial domain terms, we observed that as many as 50% of
the important tokens were multi-words out of 7000 domain terms.

3.1 DTD using Noun Phrase Chunking

We make use of the parse tree output of the slot grammar parser
(ESG) [30] to discover important domain terms. Figure 3 shows an
example parse tree with various parser relations connecting differ-
ent concepts.

First, all the knowledge sources such as knowledge articles
(HTML), manuals (PDF) etc. are appropriately pre-processed to
obtain simple text documents. The pre-processing stage itself in-
volves a lot of issues related to formatting, extracting information
from pdf etc.

The documents are parsed using the slot grammar parser. Noun
phrases are extracted from the parses and processed to discover do-
main terms. Figure 3 shows the parse tree corresponding to the sen-
tence “Turn the Wi-Fi radio on or off”. We consider all the terms
which have part-of-speech (POS) tags as ‘nouns’. These terms now
become candidates for domain terms. Furthermore, we also con-
sider the sub-tree of which this noun term is the root and make
them candidates for domain terms. In the example shown in Fig-
ure 3, such a sub-tree is “The Wi-Fi radio".

Figure 3: Parse tree for the title “Turn the wi-fi radio on or off".

This approach results in long candidates like “issues related to
receiving calls". Although such patterns are valid noun-phrases,
we want to recognize only atomic units in our list of domain terms.
In this example, we would like to keep “issues” and “receiving
calls" as separate tokens. Hence, we perform a subsequent post-
processing where the candidates are split into atomic domain terms
based on the presence of verbs and stop words. Finally, only those
domain term candidates are retained for which the count is greater
than a threshold. Table 1 shows a snapshot of the domain terms
discovered using the noun phrase chunking approach.

In our analysis, this approach results in a highly precise set of
domain term candidates. We generated approximately 2900 and
3400 domain terms in the financial domain and smartphone domain
from 9k and 16k titles, respectively.

samsung blackberry device software novatel software-version
application htc-evo wi-fi memory-card bluetooth motorola
kyocera browser voicemail microsoft-exchange lg-optimus
elite samsung-m400 samsung-galaxy-victory software-updates
samsung-array text-messaging wallpaper synchronization face-
book iphone htc aircard touchscreen gps blackberry-bold ipad
motorola-xprt htc-evo-3d sanyo-vero

Table 1: Snapshot of multi-word domain terms discovered us-
ing noun phrase chunking.

3.2 Parser Domain Term Lexicon

The ESG parser maintains a lexicon of multi-word entries which
are used by the parser in the subsequent phases as a single unit re-
sulting in a better parser output. For example, if the ESG parser has
the prior knowledge that ‘touch screen’ is a multi-word from the do-
main term lexicon, then it will parse “touch screen of the mobile"
with ‘touch screen’ as a noun. Without this domain knowledge,
‘touch’ will be treated as a verb and ‘screen’ as a noun, result-
ing in a different parse; and in many cases a noisy or incomplete
parse. The domain term discovery process adds domain terms to
the parser lexicon. Subsequently, the parser uses the multi-words
as a single token (e.g. ‘sprint navigation’ will be considered as a
noun concept, and not processed separately as a verb and a noun)
and the unigrams are favored as nouns (e.g. ‘files’ will be pro-
cessed as a noun during ambiguity). The DTD process results in
the parser generating better quality output as the number of incom-
plete or noisy parses is reduced. Since the lexicon is core to the
functionality of the parser, we would like to keep it as clean as
possible (high precision). Hence we use the noun phrase chunking
approach only on the document titles for the following three rea-
sons: 1) The extraction of titles is invariably easy and precise. 2)
The titles do not suffer from arbitrary formatting, references to pic-
tures etc. present in the body of the text, and therefore the parsing
of titles is almost always correct. 3) In our end-application of a QA
system, the titles represent the information need that the body of
the text is providing.

However, this leads to low recall for domain term discovery and
is only used to bootstrap the parser. In order to further enrich the
lexicon with more fine-grained domain terms, we use another algo-
rithm called HITS on the refined parser output. This is explained
in details in Section 4.4. The newly discovered domain terms by
HITS are again incorporated in the parser lexicon, further enrich-
ing it, and previous steps are iterated till convergence.

Once the domain terms are identified and refined parser relations
generated, the relationship between the terms need to be discovered
to construct the ontology. Since we want to discover domain rela-
tions across all possible pairs of domain concepts which would be
computationally costly and involve a lot of redundant computation,
we describe an efficient framework that indexes all parser relations
and creates a random projection for every domain concept in a rel-
atively lower dimensional space. This facilitates fast computation
of similarity between candidate domain terms as well as different
relation discovery.

4. INDEX CREATION: FEATURE SELEC-
TION, DIMENSIONALITY REDUCTION

In this section, we present the index creation module of our
framework that helps in dimensionality reduction as well as identi-
fying dominant domain terms and relations that are used as features
in the remaining part of the system.

After the discovery of domain terms, as explained in Section 3,
they are provided as an input lexicon to the slot grammar parser.
Multi-word tokens are now identified as single tokens by the parser
resulting in better parser output. In the example in Figure 3, ‘Wi-Fi
radio’ will be parsed as a single token.

Shallow semantic relationship (SSR) [10] annotation is done over
the ESG parser output which consists of rules to generate projec-
tions for all the frames in the corpus and generate normalized parser
relations. SSR detects alternative syntactic contexts expressing the
same semantic relationship between two or more entities. For ex-
ample, the sentences “Samsung has a battery" and “Samsung’s bat-
tery died" will both generate the same relation ‘nnMod:samsung_

battery’, where “nnMod" represents the type of the SSR relation
(noun modifier), and “samsung" and “battery" represent the associ-
ated concepts.

As we process the domain corpus, SSR annotations over ESG
parser output are discovered across various domain terms and other
terms. We index these SSR to use them later for finding distri-
butional similarity, and querying for other statistics such as “how
many documents contain a relationship between the term ‘install’
and other terms".

4.1 Primary Index

For each document D in the domain corpus, we index the SSR
Rq = {r1,7r2,...,rn} in the primary index using Lucene. Each
SSR r; has a type (e.g. verb-object, noun-adjective etc.) and as-
sociated concepts. The Lucene analyzer was changed to produce
a tokenstream that consists of regular tokens, their Part-of-Speech
tags and the SSR shared between the tokens as opposed to the de-
fault white space tokenizer that produces a tokenstream consisting
of words or regular tokens. For example, a document with text con-
tent as “use this cable to connect iPhone to your computer and sync
changes", the following tokenstream is produced by the analyzer:
“use cpt:verb:use rel:dm_obj:use_cable this cable cpt:noun: cable
to connect cpt:verb:connect rel:dm_comp:connect_computer rel:dm
_obj:connect_iphone iphone cpt:noun:iphone to your computer cpt:
noun:computer to sync cpt:verb:sync and charge cpt:verb:charge..."

In the example above, the SSR relations are marked with “rel:"
prefix and the concepts associated with these relations are separated
by an underscore. Accordingly, the token “rel:dm_obj:use_cable"
means that this is a relation token with “dm_obj" type (verb object
pair) and “use" and “cable" are the associated concepts. The token-
stream maintains the order of the concepts and SSR in which they
appear in the documents. Such tokenization and indexing allows us
to retrieve information such as tokens (or SSR) in the neighborhood
of a querying token (or SSR), all the corpus documents containing
a specific SSR, document frequencies of SSR etc.

4.2 Secondary Index

After the primary index has been created, we traverse over its
indexed tokens to create the secondary index. Note that in this
index, we store only the unique SSR (i.e tokens starting with ‘rel:’
prefix). This index allows us to retrieve unique SSR based on their
types or based on one of the constituents. For example, the query
“get all the ‘dm_comp’ relations, where ‘connect’ is one of the
constituents" can be effectively answered by this index.

Each SSR in the secondary index is of the form rel : wordi_worda
_words, where word; and words are domain terms (nouns) and

words belongs to verbs or prepositions and rel € {svo,dm_x,nnMod

,npo}. The SSR in the secondary index are of the following form:
1. svo depicts a subject-verb-object tuple. For example:
rel:svo:phone _offer_feature, rel:svo:phone_show_message etc.

2. nnMod depicts noun-noun modifications. For example:
rel:nnMod:iPhone_battery, rel:nnMod:screen_icon etc.

3. dm depicts actions on entities. For example: rel:dm_obj:use_
phone, rel:dm_comp:plug_iPhone etc.

4. npo depicts terms connected by prepositions. For example: sub-
scription_to_service, battery_on_phone etc.

We traverse the indexed SSR in this secondary index for discover-
ing domain terms and building the distributional similarity matrix
as explained in the next section.

4.3 Random Index: Dimensionality Reduction

In this section, we explain our random indexing framework for
computing distributional similarity [31] between two terms, which

suggests that terms sharing similar contexts are likely to be simi-
lar. Random Indexing (RI) [45] is a word co-occurrence based ap-
proach to statistical semantics. RI uses statistical approximations
of the full word co-occurrence data to achieve dimensionality re-
duction, resulting in much quicker running time and fewer required
dimensions.

In most co-occurrence models, a word-by-word matrix is con-
structed, where the values denote how many times the column’s
word occurred in the context of the row’s word. RI instead rep-
resents co-occurrence by assigning each word a high dimensional
index vector and keeping a running sum of all the index vectors for
words that co-occur. The index vectors are very sparse reducing
chances of a sparse match.

Random Indexing can also be seen as an alternative to Latent
Semantic Analysis [9]. Random Indexing is more scalable and al-
lows for the incremental learning of context information. Although
LSA is efficient, it suffers from scalability issues. It starts by gen-
erating a termX document matrix which grows with the corpus.
For finding the final LSA model, Singular Value Decomposition
(SVD) is commonly used for factorization of the term-document
matrix, which is computationally costly. Also, the LSA model can-
not be implemented easily and efficiently in an incremental or out-
of memory fashion.

To find the most likely candidate terms for a given term requires
computing similarity between all possible pairs of words. The
quicker running time and reduced dimensionality features of the
random indexing approach allow us to do this efficiently.

However, as opposed to most of the previous works that con-
sider raw neighborhood of a term as context (say, preceding and
following N terms) for random indexing [14, 39], we use only
those neighboring terms to define the context for a target term that
share a syntactic dependency (given by the slot grammar parser)
with the target term. These syntactic dependencies are represented
in Figure 3 by connecting edges between nodes. We traverse over
the indexed SSR in the secondary index and for each SSR, we add
the index vectors of a constituent term to all the other constituent
terms.

In the distributional similarity computation, we consider all SSR
to be important. However, some SSR (like “nnMod:samsung_charger,
dm_obj:charge_samsung") are more important to certain domain
terms (like ‘samsung’) than others (like “nnMod:samsung_color,
dm_obj:use_samsung"). In order to discover the dominant domain
SSR as well as additional domain terms we use another algorithm,
as explained next.

4.4 HITS Index: Dominant Domain Term and
SSR Discovery from Secondary Index

In order to discover the dominant domain SSR and terms from
corpus, we use a graph based algorithm on the secondary index.
The earlier DTD process (refer to Section 3) used noun phrase
chunking only on document titles, in order to keep the lexicon as
clean as possible to bootstrap the parser.

Any SSR can be visualized as a hub generating features to create
the domain terms. Any domain term can be visualized as an au-
thority influenced by incoming features from the hubs as depicted
in Figure 4. A good hub or domain SSR is the one generating a
lot of important domain terms. A good authority or domain term is
the one being influenced by a lot of domain SSR. The link strength
between the hub and authority is taken as the number of SSR in
the Primary Index in which both of them participate. We apply
HITS algorithm [23] on the hub-authority graph to discover domi-
nant SSR and domain terms, and add them to the HITS index.

In this algorithm the authority and hub scores are defined in

terms of each other recursively. An authority score is computed
as the sum of the hub scores of each node that points to it. A hub
value is the sum of the authority scores of each node that point to it.
This is done iteratively for all nodes until convergence. In our case,
the scores are weighed by the link strength connecting 2 nodes.

Table 2 shows a snapshot of the domain words discovered by
HITS, that are not detected earlier by the domain term discovery
approach using noun phrase chunking on titles. The dominant SSR
are used in the latter stages for relation discovery.

The newly discovered domain terms by HITS are incorporated
in the parser lexicon, further enriching it, which makes the parser
generate a refined output. The parser is run again and previous steps
are iterated till no additional domain terms are discovered with high
authority score.

‘ rel:svo:phone offer subscription

cpt:verb:offer

‘ rel:nnMod:phone_screen

rel:npo:phone_on_battery

rel:dm_obj:use phone

| rel:dm_obj:charge phone

rel:dm_obj:charge battery

Hubs Authorities

Figure 4: Hubs and authorities in the domain.

wi-fl optimus-g set-up novatel-wireless e-mail sierra-wireless apple-id
google-maps play-music mobile-network 10-digit internet-explorer
slacker-radio caller-id google-search address-book my-computer
software-update blackberry-id as-well-as windows-update terms-of-
service drop-down pro-700 add-on scp-2700 mac-os device-manager
voice-mail non-camera tru-install back-up task-manager mobile-email
thinkfree-office exchange-server preferred-roaming-list minus-sign
new-profile windows-live-messenger non-subscribers non-subscriber

Table 2: Snapshot of multi-word domain terms discovered by
HITS (not found by noun phrase chunking on titles).

5. RELATION DISCOVERY

The previous sections discuss the approach for domain term dis-
covery from corpus and creation of the indices namely, Primary,
Secondary, Random and HITS. In this section, we outline the method
for identifying relations between the discovered domain concepts
using the indices.

Random index is used to get a set of similar candidates for a
word based on similar SSR distribution in the corpus. The HITS
index consists of dominant domain terms and SSR discovered from
the secondary index. We categorize the SSR discovered by HITS
into the following 2 types:

1. 1-hop neighbor SSR of a word denotes the SSR that the target
word participates in. For example : “phone - {rel:svo:instruction_
phone_press, rel:dm_arg:keep_phone, rel:dm_subj:screen_phone

rel:npo:port_on_phone}"

2. Mutual SSR of a word pair denotes the SSR in which the word

pair participates together. For example : “iphone & mobile -
{rel:nnMod:iphone_mobile-data, rel:nnMod:iphone_mobile-hotspot,
rel:nnMod:iphone_mobile-charger}"

5.1 Synonym Discovery

We define two words to be similar if they appear in a similar
context. Here, we follow the notion of relational distributional
similarity [31]. Only those word pairs whose part-of-speech tags
are the same are retained (‘noun-noun’ or ‘verb-verb’). Word pairs,
whose members participate in any SSR together, are filtered out.
As we will see later, such mutual SSR shared by a word pair are
indicative of Action-On, Type-Of and Feature-Of relations.

Let w; and w; be a candidate word pair extracted from the ran-
dom index. Feature vector for w; is defined as: F,, = {rel;; :
wki}, where rel;, is any 1-hop neighbor SSR of w; in the HITS
index, connecting w; and wy,;. The relational distributional simi-
larity between 2 words is given by:

. Zplli:ljlki:kj (fwkqu?fU)kjvp)
Zp Zr Ili:lr‘vki:kr (fwlw sp) f’LUk,,‘vp)

where, fu,,p is the p** element of F,, and I is an indicator func-
tion.

The numerator of the above equation counts the number of times
any word wy,, appears in both the feature vectors F.,, and F,; with
SSR rely;. The denominator counts the number of times the word
wy,, appears in the feature vector of any other word with the SSR
rel;;. For example, consider the feature vector of the words ‘de-
vice’ and ‘handset’ and the feature ‘nnMod:charger’ that appears
in both the feature vectors. Now, if ‘charger’ appears only in the
context of ‘device’ and ‘handset’ with the SSR ‘nnMod’ it will con-
tribute 1 to the similarity score. But if it appears a large number of
times with other words, the contribution will be less indicating that
it is a frequently occurring word in the corpus (e.g. prepositions
or frequently occurring verbs). Word pairs with similarity scores
greater than a threshold are added to the Synonym list.

This process results in high recall but low precision, as words
like ‘folder’ and ‘tab’ have a high relational distributional similar-
ity due to overlapping context words like “open, close, minimize,
shortcut, multiple" etc. that can act on both of them. To alleviate
this, we use another parser feature to increase the precision. The
ESG parser tags a word with a set of attributes like noun, animated,
physical object, device etc.. We constrain a word pair to have over-
lapping ESG parser attributes in order to be deemed similar, which
increases the precision of the classifier. For example:

“Folder: noun cn sg physobj artf capped creation
Photo: noun cn sg physobj artf capped creation
Tab: noun cn sg physobj abst artf inst capped doc comm"

In the above example, the relational distributional similarity is
high for all the word pairs. However, the parser feature distin-
guishes between ‘folder’ and ‘tab’, but cannot distinguish between
‘folder’ and ‘photo’.

Sim(w;, w;)

5.2 Action-On Discovery

Action-On represents any activity or ‘method’ on the domain
term. For example, ‘charge’ can be an activity on ‘battery’ and
‘iPhone’, ‘display’ can be an activity on ‘menu’ and ‘icon’ etc. By
definition, an Action-On relation pair consists of a ‘verb’ that acts
on a ‘noun’. The SSR dm and svo help in Action-On identification.

The dm SSR can be classified as dm_subj, dm_obj, dm_prep,
dm_comp and dm_arg which depict scenarios where the noun is the
subject or object of the verb, the verb is connected to the argument
with a preposition etc.

The svo SSR represent subject-verb-object tuples.

E.g. “rel:svo:tap_add_account, rel:svo:phone_access_internet,
rel:svo:mobile_sync_phone, rel:svo:account_use_phone etc." The
verb-object (vo) SSR is extracted from the ‘svo’ SSR which repre-
sents action-on activities.

HITS index is traversed to extract all the dm and vo SSR. Each
word pair in the index is ranked according to the number of such
mutual SSR (dm and svo) directly shared by them. Those with a
count greater than a threshold are added to the Action-On list.

5.3 Type-Of Discovery

Type-Of relations depict Is-A hierarchy i.e. a parent-child rela-
tion. For example: “Samsung is a Type-Of mobile, Internet Ex-
plorer is a Type-Of browser, Angry Birds is a Type-Of application
etc.". In order to discover the Type-Of clues, the svo SSR in the
HITS index are grouped by the verbs, and npo SSR are grouped by
the prepositions.

The svo SSR having the verb include and npo relations having
prepositions like, such-as and as are found to be most informative,
and are used to discover Type-Of relations from the HITS index.
E.g. “rel:svo:devices_include_HTC, rel:npo:applications_ such-
as_WhatsApp, rel:npo:device_like_ computer,
rel:npo.features_like_call rel:npo:contact_such-as_address,
rel:svo:location_include_address etc.".

Type-Of candidates are also discovered from the dominant do-
main terms from the HITS index, where the words are connected by
or and especially. These keywords are taken from the Hearst [19]
patterns. E.g. service_or_process, prev_or_next,
messages_especially_sms_and_ mms etc.

5.4 Feature-Of Discovery

Feature-Of relations depict components or functionalities of a
domain term. For example: “screen is a Feature-Of mobile", “wi-fi
is a Feature-Of network", “life is a Feature-Of battery" efc. In order
to discover Feature-Of relations we use 2 primary SSR.

1. nnMod SSR that depict noun-noun modifications. For example:
“rel:nnMod:network_life,

rel:nnMod:account_settings, rel:nnMod:iPhone_battery etc."

2. svo SSR (Section 5.2) that depict subject-verb-object tuples.
The subject-object (so) word pairs are extracted from ‘svo’ SSR as
Feature-Of candidates, excluding the feature include used for Type-
Of discovery. E.g. “rel:svo:motorola-photon-4g_run_device-
software, rel:svo:router_decrease_signal-strength, rel:svo.find-a-
store_open_locator etc."

6. EXPERIMENTAL EVALUATION

We collected 5000 articles, tutorials and manuals from the smart-
phone domain. We consider WordNet [32] as the first baseline.
We also compare our system to other existing semantic knowledge
bases like BabelNet [36] and Yago [48]. Both of them harvest
knowledge from manually created lexicons and encyclopedia like
WordNet and Wikipedia.

6.1 Domain Term Evaluation

We used the back-of-the-book index of manuals, which contains
pointers to relevant topics in the book, to create the ground truth
for domain term discovery. The set of relevant topics extracted
from manuals represents the set of terms one would like to dis-
cover from corpus. Thus terms discovered through the proposed
technique should cover as much as possible of this set.

Table 3 compares the recall of the 2 approaches for domain term
discovery (using NP chunking on titles and by using HITS) with
WordNet, Yago and BabelNet on this set. It is observed that the
HITS approach discovers a number of new multi-words and dis-

Method Recall

WordNet 22.62%
NP Chunking on Titles 32.45%
HITS 40.87%
Yago 43.77%
BabelNet 53.74%

Table 3: Domain term evaluation.

cards many of the multi-words discovered by noun-phrase chunk-
ing from titles, with scores less than the threshold. Recall of Word-
Net is low as it mostly misses out on the multi-words and detects
only unigrams. BabelNet and Yago use world knowledge acquired
from manually constructed WordNet and Wikipedia, and obtain a
better recall in identifying domain terms.

To align the domain term discovery evaluation process with our
end goal of improving a QA system, we evaluated the performance
of a QA system [13] trained in the smartphone domain, with and
without such automatically discovered domain term lexicon. Ta-
ble 4 presents the comparison of the two scenarios.

Recall@N With Domain Without domain
Term Lexicon term lexicon

recall@1 0.4 0.33

recall@2 0.49 0.45

Table 4: Performance of a QA system with and without domain
term lexicon.

6.2 Relation Evaluation

For relation discovery, the performance of all the systems, in
terms of recall and precision, is computed with respect to the an-
notation statistics provided by two annotators. We extracted 3000
domain terms from the secondary index and 100 similar neighbors
for each term from the random index generating 0.6 million word
pairs. From these word pairs, we retained word pairs such that one
of the members belong to the titles. As the titles contain most of
the important domain terms, this constraint ascertains that most of
the extracted word pairs would be relevant ones in the domain. The
word pairs are partitioned into two sets.

e Set 1 consists of word pairs having some mutual SSR with
each other

e Set 2 consists of word pairs not in Set 1 and having relational
distributional similarity score greater than a threshold

We further divided word pairs in Set 1 as ‘noun-noun’ and ‘verb-
noun’ word pairs. T'wo annotators (Ann) were asked to annotate
500 ‘noun-noun’ word pairs in Set 1 as Feature-Of or none and
500 ‘verb-noun’ word pairs in Set 1 as Action-On or none. They
were further instructed to annotate 1000 randomly picked word
pairs from Set 2 as Synonyms, Type-Of or none. Since Feature-
of and Action-On relations are pretty straightforward to detect, the
annotators worked on disjoint sets; whereas for Type-Of and Syn-
onyms each of them annotated the entire Set 2.

Table 5 shows the annotator agreement for the Synonyms. The
Kappa Score [5] is high at 0.92 due to the large number of word
pairs the annotators agree are not Synonyms. Table 6 shows the an-
notator agreement for Type-Of. The Kappa Score is 0.70 due to the
large number of word pairs the annotators agree are not Type-Of.
Table 7 shows the annotation statistics for Feature-Of and Action-
On, with ‘True’ denoting the number of word pairs that the annota-
tors agree belong to the given relation type.

Agreement Ann2: Yes Ann2: No
Ann 1: Yes 49 66
Ann 1: No 41 844

Table 5: Annotator agreement for synonyms.

Agreement Ann2: Yes Ann2: No
Ann 1: Yes 92 18
Ann 1: No 274 616

Table 6: Annotator agreement for type-of.

Table 8 shows the precision-recall figures for Feature-Of, Action-
On and Type-Of. Table 9 shows the precision-recall figures for
Synonym discovery using only Random Indexing (RI) approach
with different features. Table 10 shows the precision-recall com-
parison of the full Domain Cartridge (using RI + HITS + Similarity
Eqn.) with other systems for Synonym discovery.

Relations in BabelNet come either from Wikipedia hyperlinks
or WordNet. However the relations obtained from Wikipedia are
unlabeled. Therefore, the performance of BabelNet is the same as
WordNet for relation discovery (ignoring the unlabeled relations).
Yago uses “wikipedia:redirect” links to detect synonymous con-
cepts. “A redirect is a page which has no content itself, but sends
the reader to another page, usually an article or section of an arti-
cle.” [50]. Possible reasons for re-directions are misspellings, alter-
native names, closely related names, abbreviations etc.

WordNet contains a number of relations defined over the taxon-
omy from which we pick the following relations:

1. Hyponymy: X is a hyponym of Y if X is a (kind of) Y.
2. Hypernymy: Y is a hypernym of X if X is a (kind of) Y.
3. Meronymy: X is a meronym of Y if X is a part of Y.

4. Holonymy: Y is a holonym of X if X is a part of Y.

Hyponyms and Hypernyms are same as Type-Of in our work,
whereas Meronyms and Holonyms form a subset of Feature-Of re-
lations in our work (which could detect only 1 Feature-Of relation
in our experiment). BabelNet, WordNet and Yago do not have any
category similar to Action-On in our work. Yago has Type-Of cate-
gories derived from WordNet hyponymy and hypernymy relations,
as well as from the Wikipedia categories intended to group together
pages on similar subjects in Wikipedia. Table 11 shows the re-
call comparison of all the systems for the discovery of Type-Of,
Feature-Of and Action-On relations.

A number of similarity measures have been defined over the
WordNet taxonomy that exploit distributional similarity to find the
relatedness of 2 concepts. We consider the following similarity
measures from [38] as our baseline for Synonym discovery by the
distributional similarity approach:

1. HSO - Two lexicalized concepts are semantically close if their
WordNet synsets are connected by a path that is not too long and
that “does not change direction too often”

2. LCH - This measure relies on the length of the shortest path be-
tween two synsets for their measure of similarity. They limit their
attention to ‘IS-A’ links and scale the path length by the overall
depth ‘D’ of the taxonomy

3. LESK - The relatedness of two words is proportional to to the
extent of overlaps of their dictionary definitions

Agreement #Word Pairs True False
Feature-Of 500 328 172
Action-On 500 297 203

Table 7: Annotation statistics for feature-of and action-on.

Relation Precision Recall
Feature-Of 74.9% 85.7%
Action-On 63.88% 68%
Type-Of 57% 77%

Table 8: Precision-Recall of Domain Cartridge for 3 relations.

System Precision Recall
Domain Cartridge (DC) 14% 79%
WordNet 83% 31%
DC + ESG Parser Features 17% 58%
DC + WordNet 25% 48%

Table 9: Precision-Recall of Domain Cartridge for synonyms
using only random-indexing.

4. WUP - The Wu & Palmer measure calculates relatedness by con-
sidering the depths of the two synsets in the WordNet taxonomies,
along with the depth of the LCS
5. RES - Resnik defined the similarity between two synsets to be
the information content of their lowest super-ordinate (most spe-
cific common subsumer)
6. JCN - It uses the notion of information content, but in the
form of the conditional probability of encountering an instance of a
child-synset given an instance of a parent synset: 1/jcn_distance,
where jen_distance = IC (synset1) +1C (synsets)—2x1C (lcs)
7. LIN - The math equation is modified a little bit from JCN:
2x IC(les)/(IC(synsetr) + IC(synsets)), where IC(x) is the
information content of ‘x’. One can observe, then, that the relat-
edness value will be greater-than or equal-to zero and less-than or
equal-to one

Table 12 shows the F-score comparison of different WordNet
similarity measures with Domain Cartridge. Figure 5 shows a snap-
shot of constructed smartphone domain ontology with our system.

7. DISCUSSIONS

Domain term discovery, of which multi-words form an important
component, forms the primary module of the Domain Cartridge
framework. Domain terms extracted using noun phrase chunk-
ing on the document titles are used to enrich the parser lexicon to
bootstrap the parser which attains 32% recall on ground-truth con-
structed from the back-of-the-book index. Furthermore, domain
terms are extracted using HITS on a bipartite graph representa-
tion of the SSR and concepts on the entire corpus, which further
improved the recall by 8%. The domain term discovery process
achieves 18% improvement in recall over WordNet, which lacks
most of the multi-word tokens. In fact, the ESG Parser + HITS dis-
covers 1586 multi-word domain terms in the corpus, in contrast to
46 multi-word tokens identified by WordNet. However, BabelNet
and Yago that incorporate both WordNet and Wikipedia informa-
tion obtain a better recall at the cost of human annotation.

The newly discovered domain terms, mostly multi-words, result
in 7% and 4% improvement at recall@ 1 and recall @2 respectively,
in an in-house Question-Answering system on the same corpus.

System Precision Recall F-Score
Yago 37.67% 31.60% 34.37%
BabelNet, WordNet 83% 31% 45.14%
Domain Cartridge (DC) 58% 41% 47.6%
DC + WordNet 62% 40% 49%
DC + ESG Parser Features 65% 39% 49.14%

Table 10: Precision-Recall comparison of Domain Cartridge
(random-indexing, HITS and sim. eqn.) with other systems.

System Type-Of Feature-Of Action-On

BabelNet, WordNet 19.27% - -
Yago 25.12% - -
Domain Cartridge 77% 85.7% 68%

Table 11: Recall comparison of systems for 3 relations.

WordNet F-Score
LCH 0.22
RES 0.31
JCN 0.42
PATH 0.42
LIN 0.43
WUP 0.43
LESK 0.45
Domain Cartridge 0.49

Table 12: F-Score comparison of WordNet similarity measures
with Domain Cartridge.

This results from a better parser performance, as the multi-words
are used to enrich the parser lexicon, which is evident from less
number of incomplete parses and reduction in the parse cost. The
number of incomplete parses went down by 73% after incorporat-
ing the multi-word domain terms in the parser lexicon. For exam-
ple, the sentence “Use Sprint Zone" is parsed as “Use-Noun Sprint-
Verb Zone-Noun" in absence of multi-word information resulting
in an incomplete parse. Once the parser has the knowledge that
“Sprint Zone" is a multi-word domain term, the parse is complete
(“Use-Verb & Sprint Zone-Noun").

We primarily focus on 4 relations in the constructed ontology us-
ing Domain Cartridge framework namely, Synonyms (‘similarity’),
Type-Of (‘hierarchical’), Action-On (‘functional’) and Feature-Of
(‘attributes’). The Synonym discovery approach uses Random In-
dexing (RI) for dimensionality reduction and computes the top K
neighbors of a given word based on relational distributional simi-
larity of the word with the candidate terms using ESG parser fea-
tures. This method achieves a high recall (79%) but low precision
(14%) due to sparse matches, as many neighboring words sharing
similar or direct SSR are treated as similar. For example, given
the target word ‘browser’, RI retrieves “opera-mini, ebook, apps,
messaging, load, application" efc. as candidate similar terms due
to overlapping SSR in the context. In the second stage for Syn-
onym discovery, we use a weighted relational distributional sim-
ilarity measure on these candidate terms using dominant domain
SSR extracted using HITS. This significantly increases precision,
as we consider the discriminative power of the matched SSR in the
similarity equation, and consider only dominant SSR as given by
HITS, achieving an F-Score of 47.6%.

It is observed from the annotated data in the smartphone domain
that 84% instances are not Synonyms, which indicates the chal-
lenge in Synonym discovery. The performance is further improved
to 49.14% using parser features in the form of attributes. A num-
ber of similarity measures (Lin, Lesk, LCH, Res, Path, WUP etc.)
have been built over WordNet, using the path between concepts,
taxonomy depth, information content of nodes efc. All the meth-
ods achieve a high recall but low precision; due to less coverage but
more accurate due to manual construction of the taxonomy, with
the best F-Score attained at 45% (prec/recall - 83%/31%). Yago
achieves an F-Score of 34.37% in discovering Synonyms; whereas
Domain Cartridge achieves an F-Score of 49% for Synonym dis-
covery, without any supervision at all.

BabelNet uses only the semantic relations in WordNet, and there-
fore has the same performance as WordNet in relation discovery.

phone mobile- wi-fi-
< hots pot hotspot
Type-Of

motorola-| , blackberry-
admiral | synonym(bold-9930

Synonym

Feature-Of

battery, airplane-
mode, bluetooth,
applications, apps,
application-data,
application-cache,
text-messaging

Action-On

turn, connect,
replenish,
program, relate,
lock, remove,
identify, respond,
call, plug, use

samsung-galaxy-
tab, htc-evo-shift-
49, samsung-

galaxy-s-iii, htc-
evo-4g, motorola,
mac, kyocera,
tablet, sanyo

Figure 5: Snapshot of constructed smartphone domain ontol-
ogy using Domain Cartridge.

Yago and WordNet do not contain any relation similar to Action-On
in Domain Cartridge. The only relations corresponding to Feature-
Of in WordNet i.e. Meronymy and Holonymy, that form a subset
of Feature-Of, hardly detect any positive examples in the annotated
data. Yago does not have any Feature-Of relation category. The
WordNet relations, Hyponymy and Hypernymy, that correspond to
Type-Of in our framework have a recall of 20%. Yago has a recall
of 25% for Type-Of corresponding to the “wikipedia:redirect” links
and the WordNet relations, in contrast to the Domain Cartridge re-
call of 77%. Overall Domain Cartridge achieves an F-Score of
80%, 66% and 65.5% for Feature-Of, Action-On and Type-Of re-
spectively. The SSR features prove to be very effective in capturing
direct relation between domain terms. The Type-Of relations are
typically detected using a modification of the Hearst [19] patterns
on the ESG parser output.

8. RELATED WORK
8.1 Automatic Ontology Creation

An ontology can be seen as a data structure that specifies terms,
properties and relations among them for a richer knowledge repre-
sentation. Many of the existing approaches to create ontology rely
on manual or supervised techniques. Due to supervision they are
time-consuming, resource-demanding and difficult to scale.

YAGO [48] is a light-weight, extensible ontology, with concepts
discovered from Wikipedia and unified with WordNet, using a care-
fully designed combination of rule-based and heuristic methods.

BabelNet [36] is a large multilingual semantic network that in-
corporates lexicographic and encyclopedic knowledge from Word-
Net and Wikipedia. It connects concepts and named entities in a
very large network of semantic relations. It uses machine transla-
tion to enrich resources from all languages. Relations in BabelNet
come either from Wikipedia hyperlinks or WordNet. However, the
relations obtained from Wikipedia are unlabeled.

A deep NLP-based system is described in [35] that automatically
extracts and populates domain-specific ontologies from morpho-
logical structures in free text. It starts with a small seed of domain
concepts, performs a graph-based pattern discovery from text and
finds taxonomic relations between the concepts in the current on-
tology. The authors manually provided 48 patterns for identifying

type-of and part-of relations, together with WordNet and Wikipedia
for synonym discovery. Jaguar [2] automatically builds domain-
specific ontologies from text. It uses well-formed procedures to im-
pose a hierarchical structure on the discovered concepts using the
semantic relations discovered by Polaris [33] and WordNet [32].

Terminae method [4] is used for building ontological models
from text using linguistic analysis. An expert is required to se-
lect the most important concepts for the targeted ontology from the
list of candidate terms discovered by the tool. Lexical knowledge
resources are used to generate domain ontologies from text docu-
ments in [29]. User intervention is required at the end of the process
to select the relevant concepts and relations. The authors in [21]
generate an ontology based on an analysis of a set of texts followed
by the use of WordNet. The analysis of the corpus retrieves words
as concepts. These words are then searched in WordNet to find
concepts associated with these words. A modified version of SOTA
algorithm is used to extract terms from documents grouped hierar-
chically in [22]. Concepts are assigned to the tree nodes based on
WordNet hyponymy relation. The authors in [24] use WordNet as a
general ontology to discover a subset of concepts to build a domain
ontology; whereas [34, 1] use WordNet and a supplementary mod-
ule to look for missing or associated concepts in the Web. User
intervention is required to remove noise. A method for ontology
merging based on concepts using WordNet is described in [8].

The USP system [41] can extract formulas from corpus but is
limited to extractions for which there is substantial evidence in the
corpus. The knowledge extracted is simply a large set of formu-
las without ontological structure. They build further on the USP
semantic parser by adding the capability to form hierarchical clus-
terings of logical expressions, linked by IS-A relations [42].

As we can see, most of the automatic methods for ontology cre-
ation heavily depend on some manually created lexical resources
like WordNet, or a seed set of manually provided terms and re-
lations which are expanded to form the full domain ontology, or
highly rule-based (as we will also see in the next section). Most of
the approaches do not deal with multi-word domain terms. In this
work, we propose a framework that does not rely on any form of
supervision. In the following subsection, we talk of the different
approaches to discover specific type of relations for ontology.

8.2 Relation Discovery

The most common method of discovering similar words from
text uses the principle of distributional hypothesis [17] which says
that words which occur in similar contexts tend to have similar
meanings. There have been many proposals for computing dis-
tributional similarity of words [20, 40, 28]. Our approach of iden-
tifying the context is similar to [15, 20, 44, 28] in the usage of a
parser, which identifies the context of a word to consist of words
connected to the target word by important parser relations. How-
ever, our similarity computation differs in the following way: 1)
Random Indexing is used for dimensionality reduction which is
scalable (in contrast to Latent Semantic Indexing [27]) 2) The simi-
larity computation of the context vectors uses a specialized scoring
mechanism on dominant domain relations extracted from a bipar-
tite graph representation of the parser relations and domain terms.

Inference rules from text are automatically discovered using sim-
ilar paths in dependency trees in [28]. The authors in [26] used re-
lations extracted from [6] to discover concepts from corpus. Simple
patterns are used to discover taxonomic relations from Web in [25].

The authors in [19] use manually discovered lexical patterns to
detect Hypernyms. These patterns (Hearst) suffered from limited
recall, and local nature of the patterns introduced errors. The recall
is improved in [43] by refining the rules to increase coverage and

using supervised classification on the Hearst patterns. The authors
in [46] discovered a large number of weak patterns to detect Hyper-
nyms, using WordNet, from a corpus of NewsWire sentences. They
achieved a high precision but low recall with an F-score of 0.348.
More recently, the authors in [37] applied the techniques described
in [46] to detect Hypernyms of Named Entities (i.e. Proper Nouns)
to improve performance of Question Answering systems. They ob-
tained 53% MAP and the automatically discovered Hyponyms re-
sulted in a 9% performance boost on a TREC Question Answering
data set. A method of discovering Hyponymy relation is described
in [51] by combining Wikipedia and other Web documents using
distributional similarity and hierarchical distances in the Wikipedia
database.

The authors in [3] use a method similar to [19] for obtaining
Meronym and Holonym relationships, whereas the work in [11, 12]
use a set of manually devised patterns to discover part-whole rela-
tionships from text.

Most of the works, discussed so far, either use a manually con-
structed resource to bootstrap the classifier, or manually provided
lexical patterns which suffer from the sparsity of patterns in real
life texts, and noisy output due to sparse matches. Although, we
do use some rules on the parser output for relation discovery (in
the form of shallow semantic relations from the parser), they are
limited in nature and work at the conceptual level rather than at the
lexical level.

9. CONCLUSIONS

In this work, we propose an unsupervised framework for con-
structing a shallow domain ontology from corpus. Unlike many
other existing approaches like Yago and BabelNet, we do not make
use of external knowledge resources like WordNet, Wikipedia etc.
or manually provided data in the form of seed words or relations.
The first part of this work deals with discovering domain terms
from corpus using noun phrase chunking and a bipartite graph of
shallow semantic relations and domain terms. Multi-words form
an important component of the domain term discovery process. We
show that the incorporation of these multi-words in the parser lex-
icon improves the parser performance, with 73% reduction in the
number of incomplete parses and better parser output, which im-
proves the performance of an in-house Question-Answering system
by upto 7%.

The second part of this work focuses on creating a shallow ontol-
ogy using domain terms, and relations like Synonyms (‘similar-to’),
Type-Of (‘is-a’), Feature-Of (‘attributes’) and Action-On (‘meth-
ods’). We show that the Synonym discovery approach, using a
modified relational distributional similarity measure on dominant
domain SSR and weighted evidence measure, performs better than
most of the existing approaches to Synonym discovery using Word-
net, BabelNet, and Yago. All the discovered domain terms and rela-
tions (using SSR) are evaluated on manually annotated data, where
we achieve better performance over the compared resources, with-
out using any mode of supervision.

An important future work is to measure the reduction in cus-
tomization time required to adapt the QA system from one domain
to another by integrating Domain Cartridge in its pipeline. The
advantage of the framework is that we need to change only the
Primary Index for migrating to some other domain, keeping the re-
maining part of the framework intact.

10. REFERENCES
[1] E. Agirre, O. Ansa, E. H. Hovy, and D. Martinez. Enriching
very large ontologies using the www. In ECAI Workshop on
Ontology Learning, 2000.

(2]

(3]
(4]
(5]

(6]

(7]
(8]
(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]
[26]

[27]

M. Balakrishna, D. I. Moldovan, M. Tatu, and M. Olteanu.
Semi-automatic domain ontology creation from text
resources. In LREC, 2010.

M. Berland and E. Charniak. Finding parts in very large
corpora. ACL ’99.

B. Biebow and S. Szulman. Terminae: A linguistic-based
tool for the building of a domain ontology. In EKAW, 1999.
J. Carletta. Assessing agreement on classification tasks: the
kappa statistic. Comput. Linguist., 1996.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. H. Jr., and
T. Mitchell. Toward an architecture for never-ending
language learning. AAAI 2010.

E. Charniak. A maximum-entropy-inspired parser. NAACL
2000.

M. Cho, H. Kim, and P. Kim. A new method for ontology
merging based on concept using wordnet. In ICACT 2006.
S. T. Dumais. Latent semantic analysis. Annual Review of
Information Science and Technology, 38, 2004.

J. Fan, A. Kalyanpur, D. Gondek, and D. Ferrucci.
Automatic knowledge extraction from documents. IBM
Journal of Research and Development, 56(3.4), 2012.

R. Girju, A. Badulescu, and D. Moldovan. Learning semantic
constraints for the automatic discovery of part-whole
relations. In NAACL 03, 2003.

R. Girju, A. Badulescu, and D. Moldovan. Automatic
discovery of part-whole relations. Comput. Linguist., 32(1),
2006.

D. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. A.
DubouAr, L. Zhang, Y. Pan, Z. Qiu, and C. Welty. A
framework for merging and ranking of answers in deepqa.
IBM Journal of Research and Development, 56(3), 2012.

J. Gorman and J. R. Curran. Random indexing using
statistical weight functions. EMNLP ’06.

G. Grefenstette. Explorations in Automatic Thesaurus
Discovery. 1994.

B. Hajian and W. Tony. A method of measuring semantic
similarity using a multi-tree model proceedings. In ITWP’11,
2011.

Z. Harris. Distributional structure. Word, 10(23), 1954.

C. Havasi, R. Speer, and J. Alonso. Conceptnet 3: a flexible,
multilingual semantic network for common sense
knowledge. In Recent Advances in Natural Language
Processing, 2007.

M. A. Hearst. Automatic Acquisition of Hyponyms from
Large Text Corpora. ACL, 1992.

D. Hindle. Noun classification from predicate-argument
structures. ACL *90.

H. Hu and D.-Y. Liu. Learning OWL ontologies from free
texts. volume 2, 2004.

L. Khan and F. Luo. Ontology construction for information
selection. ICTAI *02.

J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46, 1999.

H. Kong, M. Hwang, and P. Kim. Design of the automatic
ontology building system about the specific domain
knowledge. In ICACT 2006, volume 2, 2006.

Z. Kozareva and E. Hovy. A semi-supervised method to learn
and construct taxonomies using the web. EMNLP °10.

J. Krishnamurthy and T. Mitchell. Which noun phrases
denote which concepts? In ACL, 2011.

A. Kumaran, R. Makin, V. Pattisapu, S. E. Sharif,

(28]

[29]

(30]

(31]

(32]
[33]

[34]

(35]

(36]
[37]
(38]

(39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]

G. Kacmarcik, and L. V. Automatic extraction of synonymy
information: An extended abstract.

D. Lin and P. Pantel. Dirt — discovery of inference rules from
text. In KDD, 2001.

D. Lonsdale, Y. Ding, D. W. Embley, and A. Melby.
Peppering knowledge sources with salt: Boosting conceptual
content for ontology generation. In In AAAI Workshop for
Semantic Web Meets Language Resources, 2002.

M. C. McCord, J. W. Murdock, and B. K. Boguraev. Deep
parsing in watson. In IBM Journal of Research and
Development, volume 56, 2012.

S. Mcdonald and M. Ramscar. Testing the distributional
hypothesis: The influence of context on judgements of
semantic similarity. In 23rd Annual Conference of the
Cognitive Science Society, 2001.

G. A. Miller. Wordnet: A lexical database for english.
COMMUNICATIONS OF THE ACM, 38, 1995.

D. Moldovan and E. Blanco. Polaris: Lymba’s semantic
parser. In LREC’12,2012.

D. I. Moldovan and R. Girju. Domain-specific knowledge
acquisition and classification using wordnet. In FLAIRS
Conference, 2000.

H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo.
Ontoharvester: An unsupervised ontology generator from
free text. 2013.

R. Navigli and S. P. Ponzetto. ACL *10.

P. S. Paul McNamee, Rion Snow and J. Mayfield. Learning
named entity hyponyms for question answering. In IJJCNLP,
2008.

T. Pedersen and S. Patwardhan. Wordnet::similarity -
measuring the relatedness of concepts. 2004.

J. K. Pentti Kanerva and A. Holst. Random indexing of text
samples for latent semantic analysis. 22nd Annual
Conference of the Cognitive Science Society, 2000.

F. Pereira, N. Tishby, and L. Lee. Distributional clustering of
english words. In ACL, 1993.

H. Poon and P. Domingos. Unsupervised semantic parsing.
In EMNLP, 2009.

H. Poon and P. Domingos. Unsupervised ontology induction
from text. In ACL, 2010.

A. Ritter, S. Soderland, and O. Etzioni. What is this, anyway:
Automatic hypernym discovery. AAAI 2009.

G. Ruge. Experiment on linguistically-based term
associations. Inf. Process. Manage., 28(3), 1992.

M. Sahlgren. An introduction to random indexing. Methods
and Applicatons of Semantic Indexing Workshop in ICTKE,
2005.

R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic
patterns for automatic hypernym discovery. In NIPS. 2005.
S. Staab and R. Studer. Handbook on Ontologies. Springer
Publishing Company, Incorporated, 2nd edition, 2009.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. WWW *07.

O. V. and A. P. Ontology based semantic similarity
comparison of documents. In Proc. of IEEE 14th workshop
on database and expert systems applications, 2003.
Wikipedia. Wikipedia, the free encyclopedia, 2013.

I. Yamada, K. Torisawa, J. Kazama, K. Kuroda, M. Murata,
S. De Saeger, F. Bond, and A. Sumida. Hypernym discovery
based on distributional similarity and hierarchical structures.
EMNLP °09.

