# Probabilistic Graphical Models for Credibility Analysis in Evolving Online Communities

By Subhabrata Mukherjee

# **Outline**

- Motivation
- Related Work
- Credibility Analysis
  - Health Communities
  - News Communities
  - Temporal Evolution & Review Communities
- Related Applications
- Conclusions

# Online Communities as a Knowledge Resource



Online communities are massive repositories of (untapped) knowledge, largely unstructured in nature

Wealth of topic-specific communities and discussion forums about health, news, music, consumer products etc.

- Half of US physicians rely on online resources (e.g., Youtube and Wikipedia)
   [IMS Health Report, 2014]
  - 40% online consumers would not buy electronics without consulting online reviews first [Nielson Corporation, 2016]

# Online Communities as a Knowledge Resource: Credibility and Trust Concerns



- Noisy, unreliable, and subjective user-generated content
  - Rumors, spams, misinformation, bias
  - Yelp internally rejects 25% reviews as fake<sup>1</sup>
  - Only 34% of adult US population somewhat trust on social media information [PEW Research, 2016] and 80% do not trust major news networks [Gallup poll, 2013]

<sup>&</sup>lt;sup>1</sup>https://www.yelpblog.com/2013/09/fake-reviews-on-yelp-dont-worry-weve-got-your-back



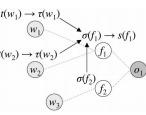
Several large-scale Knowledge Bases (KBs) exist like YAGO, NELL, DBpedia, Freebase etc.

- These store millions of facts about people, places, and things (or, entities) (e.g., Obama\_BornIn\_Hawaii)
- High precision, low coverage --- store information mostly about prominent entities
- Require manual curation, or operate over structured data (e.g., Wiki infoboxes)
- Only recently efforts are put to combine open Information Extraction and structured KB (e.g., KnowledgeVault)

# **Truth / Fact Finding**

- Structured data (e.g., SPO triples, tables, networks)
- Objective facts (e.g.,
   Obama\_BornIn\_Hawaii vs.
   Obama\_BornIn\_Kenya)
- No contextual data (text)
- No external KB (Knowledge Base) or metadata

|                    | 2                        | r <sup>(1)</sup>              | Α       | $V^{(2)}$                         | $\mathcal{X}^{(3)}$ |         |
|--------------------|--------------------------|-------------------------------|---------|-----------------------------------|---------------------|---------|
| Object             | City                     | Height                        | City    | Height                            | City                | Height  |
| Bob                | NYC                      | 1.72                          | NYC     | 1.70                              | NYC                 | 1.90    |
| Mary               | LA                       | 1.62                          | LA      | 1.61                              | LA                  | 1.85    |
| Kate               | NYC                      | 1.74                          | NYC     | 1.72                              | LA                  | 1.65    |
| Mike               | NYC                      | 1.72                          | LA      | 1.70                              | DC                  | 1.85    |
| Joe                | DC                       | 1.72                          | NYC     | 1.71                              | NYC                 | 1.85    |
| 1 1 1 1 2          |                          | 1.72                          |         | 1.71                              | MIC                 | 1.05    |
| Table 2            | 2: Grou                  |                               | and Co  | onflict Re                        | solutio             |         |
|                    | 2: Grou                  | nd Trutl                      | and Co  | onflict Re                        | solutio             | ı Resul |
| Table 2 Object Bob | 2: Groun                 | nd Truth<br>d Truth           | and Co  | onflict Re                        | solutio             | n Resul |
| Object             | 2: Grou<br>Groun<br>City | nd Truth<br>d Truth<br>Height | voting/ | Onflict Re<br>Averaging<br>Height | solution<br>(City   | n Resul |
| Object<br>Bob      | City NYC                 | nd Truth d Truth Height 1.72  | Voting/ | Averaging Height                  | City                | Result  |



# **Linguistic Analysis**

- Unstructured text
- Subjective information (e.g., opinion spam, bias, viewpoint)
- External KB (e.g., WordNet, KG)
- No network / interactions, or metadata



RQ: How can we complement expert KBs (traditional resources) with large scale non-expert data (online communities)?

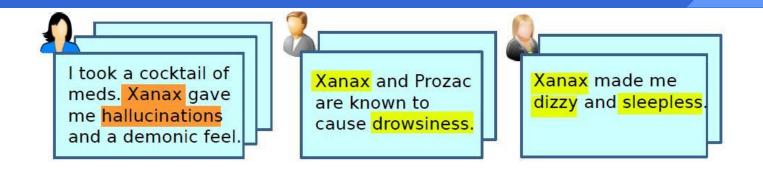
RQ: How can we develop models that jointly leverage users, network, and context for knowledge fusion? We study this with respect to some diverse online communities:

- 1. Healthforums (e.g., Healthboards, Patients.co.uk)
- 2. News communities (e.g., Digg, Reddit, Newstrust)
  - 3. Product review communities (e.g., Amazon, Yelp, Beeradvocate)

# **Outline**

- Motivation
- Related Work
- Credibility Analysis
  - Health Communities
  - News Communities
  - Temporal Evolution & Review Communities
- Related Applications
- Conclusions

# Case-Study I: Identifying Credible Side-effects of Drugs from User-generated Posts in Healthforums

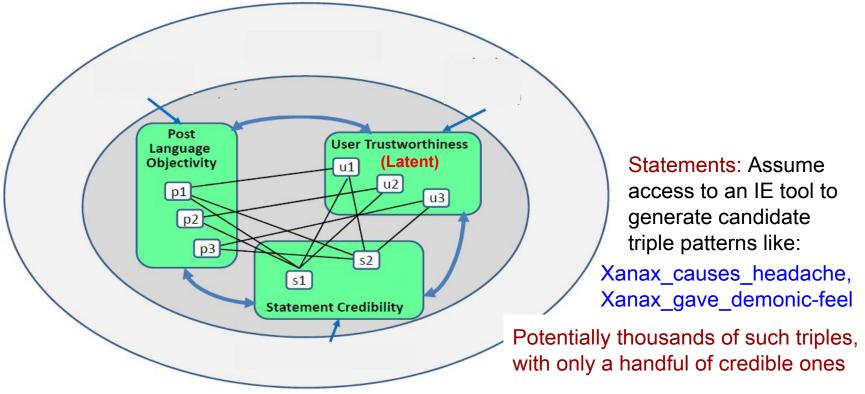


Problem: Given a set of posts from different users, extract credible SPO triples (DrugX\_HasSideEffect\_Y) from trustworthy users

Subhabrata Mukherjee, Gerhard Weikum and Cristian Danescu-Niculescu-Mizil: KDD 2014

#### Network of Interactions: Cliques

Each user, post, and statement is a random variable with edges depicting interactions.



Idea: Trustworthy users corroborate on credible statements in objective language

# Conditional Random Field to Exploit Joint Interactions (Users + Network + Context)

**Observable Features** Linguistic Features User Features from Authority **Emotionality** (#posts, from Context (bag of words) Profile: Demographics, Joint Probabilistic Inference #thanks, ...) Verbosity, Activity etc. Discourse, Modalities, Post Affective Emotion, **User Trustworthiness** Language Objectivity Subjectivity, Negation u2 p1 u3 etc. p2 Statement Credibility Training Labels (true, false)

Partial Supervision: Expert stated (top 20%) side-effects of drugs from MayoClinic used as partial training labels. Model predicts the most likely label assignment of remaining unobserved ones.

#### Semi-Supervised Conditional Random Field

- 1. Estimate user trustworthiness :  $t_k = \frac{\sum_i \mathbb{I}_{S_{i,k} = \text{True}}}{|S_k|}$
- 2. E-Step: Estimate label of unknown statements by Gibbs' sampling:

$$Pr(S_i^U|P, U, S^L; W) \propto \prod_{\nu \in C} t_k \times \phi_{\nu}(S_{\nu}^*, p_j, u_k; W)$$

3. M-Step: Maximize log-likelihood to estimate feature weights using Trust Region Newton:

$$W^{(\nu+1)} = argmax_{W'} \sum_{S^U} q(S^U) \log Pr(S^L, S^U | P, U; W')$$

Apply E-Step and M-Step till convergence

#### Healthforum Dataset

Healthboards.com community (www.healthboards.com) with 850,000 registered users and 4.5 million messages

► We sampled 15,000 users with 2.8 million messages

Expert labels about drugs from MayoClinic portal

- 2172 drugs categorized in 837 drug families
- 6 widely used drugs used for experimentation

#### Healthforum Dataset

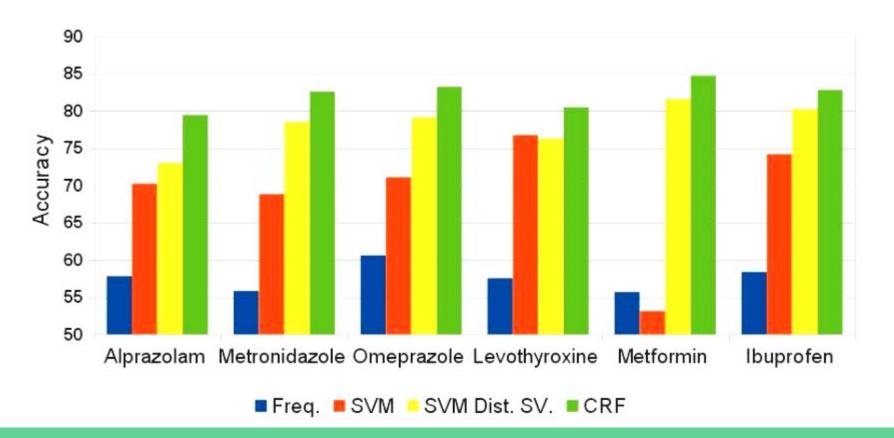
Healthboards.com community (www.healthboards.com) with 850,000 registered users and 4.5 million messages

► We sampled 15,000 users with 2.8 million messages

Expert labels about drugs from MayoClinic portal

- 2172 drugs categorized in 837 drug families
- 6 widely used drugs used for experimentation

#### **Experimental Results**



#### **Take-away / Contributions**

- Semi-supervised CRF to jointly identify trustworthy users, credible statements, and reliable postings from partial expert information
- A framework to incorporate richer aspects like user expertise, topics / facets, temporal evolution etc.

# **Outline**

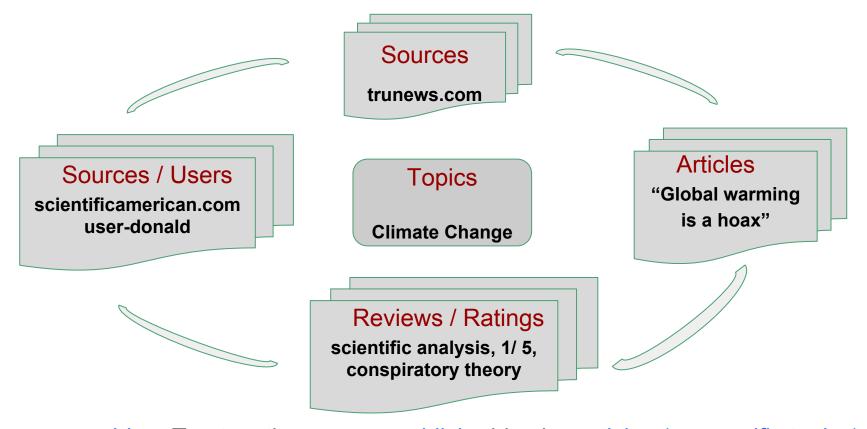
- Motivation
- Related Work
- Credibility Analysis
  - Health Communities
  - News Communities
  - Temporal Evolution & Review Communities
- Related Applications
- Conclusions

# Case-Study II: Credibility Analysis in News Communities

- A news community is a (heterogeneous) news aggregator site (e.g., reddit.com, digg.com, newstrust.net)
  - Users can give explicit feedback (e.g., rate, review, share) on the quality of news
  - Interact (e.g., comment, vote) with each other
  - These interactions/feedback are biased by users' viewpoints on polarized topics

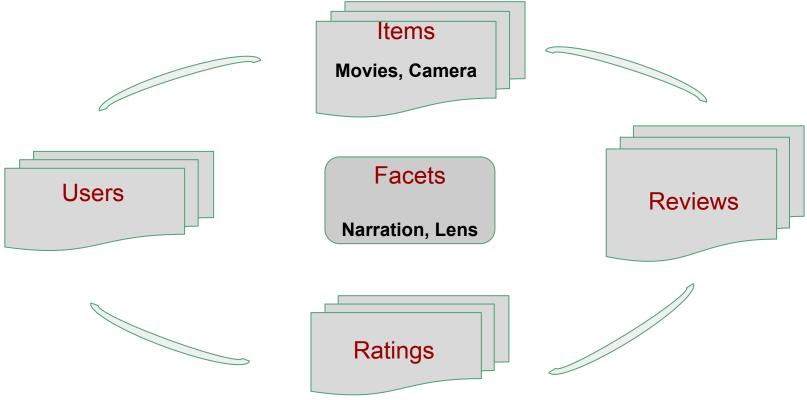
Subhabrata Mukherjee and Gerhard Weikum: CIKM 2015

#### **News Communities: Interactions**



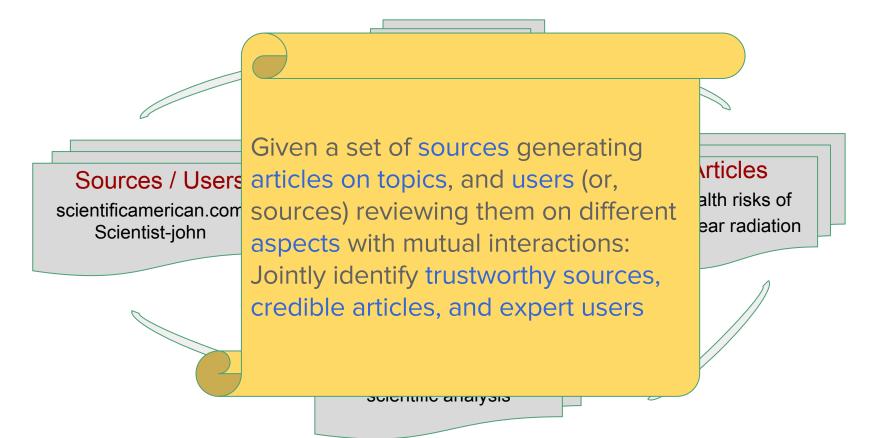
Idea: Trustworthy sources publish objective articles (on specific topics) corroborated by expert users with credible reviews/ratings, and the converse

#### **Review Communities: Interactions**

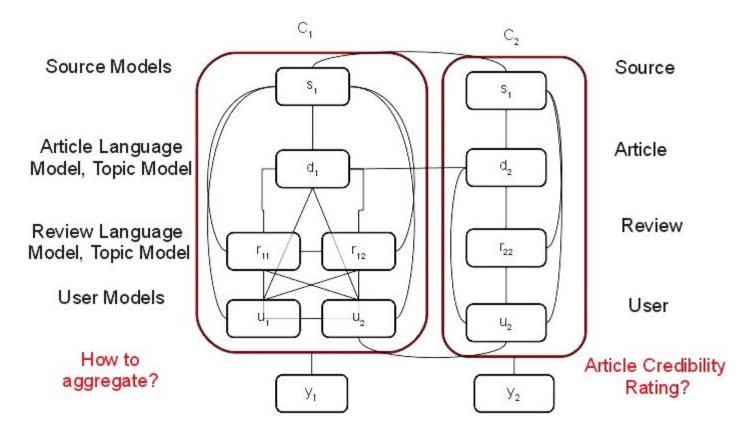


Idea: Expert users contribute credible reviews/ratings that highlight essential facets of items

#### **Problem Statement**



#### Online Communities: Factors



Related to Ensemble Learning, Learning to Rank

We use CRF to capture these joint interactions

RQ: How to incorporate continuous ratings instead of discrete labels in CRF?

Probability Mass Function for discrete labels:

$$p(y|X) = \frac{exp(\Psi)}{\sum_{y} exp(\Psi)}$$

Probability Density Function for continuous ratings:

$$p(y|X) = \frac{exp(\Psi)}{\int_{-\infty}^{\infty} exp(\Psi)dy}$$

#### Continuous Conditional Random Field

 We show that a judiciously selected energy function for clique interactions results in multivariate gaussian p.d.f. !!!

$$P(y|X) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} exp(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu))$$

• Constrained optimization problem with constraints on  $\Sigma$  Constrained Stochastic Gradient Descent for inference

Predicting
Article
Credibility
Ratings

| Model                                        | Only<br>Title<br>MSE | Title<br>& Text<br>MSE |
|----------------------------------------------|----------------------|------------------------|
| Language Model: SVR                          |                      |                        |
| Language (Bias and Subjectivity)             | 3.89                 | 0.72                   |
| Explicit Topics                              | 1.74                 | 1.74                   |
| Explicit + Latent Topics                     | 1.68                 | 1.01                   |
| All Topics (Explicit + Latent) + Language    | 1.57                 | 0.61                   |
| News Source Features and Language Model: SVR |                      |                        |
| News Source                                  | 1.69                 | 1.69                   |
| News Source + All Topics + Language          | 0.91                 | 0.46                   |
| Aggregated Model: SVR                        |                      |                        |
| Users + All Topics + Language + News Source  | 0.43                 | 0.41                   |
| Our Model: CCRF+SVR                          |                      |                        |
| User + All Topics + Language + News Source   | 0.36                 | 0.33                   |

Progressive decrease in Mean-squared-Error with more network interactions, and context

#### **Take-away / Contributions**

- Continuous CRF to jointly learn user & source expertise, article & review/rating credibility
- A generalized (extensible) framework for Credibility
   Analysis incorporating richer aspects like user & source expertise, and viewpoint on (latent) topics

# **Outline**

- Motivation
- Related Work
- Credibility Analysis
  - Health Communities
  - News Communities
  - Temporal Evolution & Review Communities
- Related Applications
- Conclusions

# **Temporal**

Online communities are dynamic, as users evolve and mature over time

Therefore, expertise and trustworthiness are not static concepts

### **Evolution**

RQ: How to capture evolving user expertise?

We study this w.r.t item recommendation task

# **Camera Reviews**

"My first DSLR. Excellent camera, takes great pictures with high definition, without a doubt it makes honor to its name."

[Aug, 1997]

# by User John

"The EF 75-300 mm lens is only good to be used outside. The 2.2X HD lens can only be used for specific items; filters are useless if ISO, AP,.... The short 18-55mm lens is cheap and should have a hood to keep light off lens." [Oct, 2012]

RQ1: How can we quantify this change in user maturity or experience?

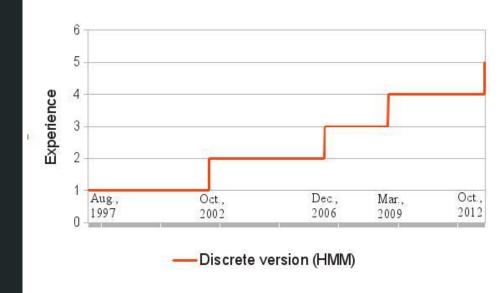
RQ2: How can we model this evolution or progression in maturity?

### **Discrete**

Users at similar levels of experience have similar writing style, facet preferences, and rating behavior

[S. Mukherjee, H. Lamba, G. Weikum, ICDM '15]

# **Experience Evolution**



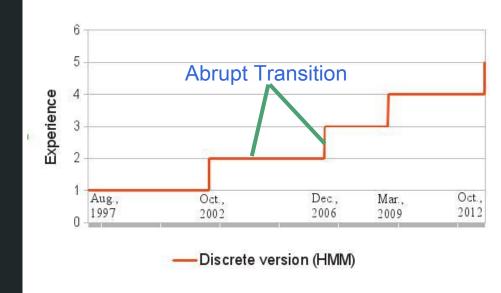
Assumption: At each timepoint (of writing a review) a user remains at the same level of experience, or moves to the next level

### **Discrete**

Users at similar levels of experience have similar writing style, facet preferences, and rating behavior

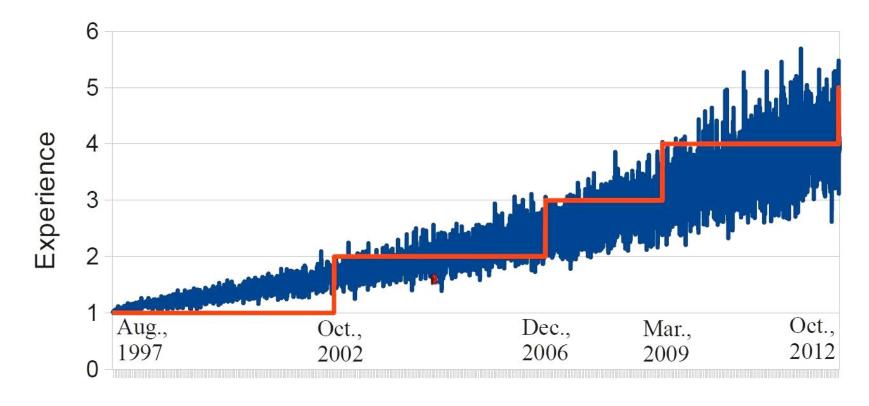
[S. Mukherjee, H. Lamba, G. Weikum, ICDM '15]

# **Experience Evolution**



Assumption: At each timepoint (of writing a review) a user remains at the same level of experience, or moves to the next level

# Continuous Experience Evolution (KDD 2016)



— Continuous version (GBM) — Discrete version (HMM)

#### Continuous Experience Evolution: Assumptions

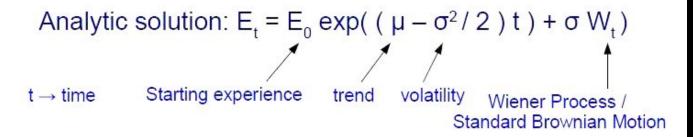
- Continuous-time process, always positive
- Markovian assumption: Experience at current time depends only on the latest observed experience
- Drift: Overall trend to increase over time
- Volatility: Progression may not be smooth with occasional volatility. E.g.: series of expert reviews followed by a sloppy one

We show these properties to be satisfied by the continuous-time stochastic process:

Geometric Brownian Motion

#### Geometric Brownian Motion

Stochastic Differential Equation:  $dE_t = \mu E_t dt + \sigma E_t dW_t$   $E_t \rightarrow \text{Experience at time 't'}$  deterministic trend trend volatility

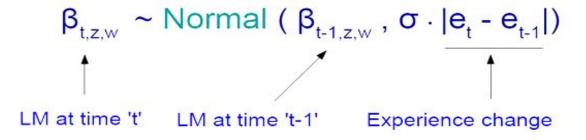


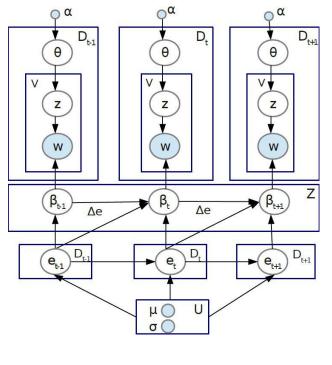
We show these properties to be satisfied by the continuous-time stochastic process:

Geometric Brownian Motion

# Language Model (LM) Evolution

- Users' LM also evolves with experience evolution
- Smoothly evolve over time preserving Markov property of experience evolution
- Variance should change with experience change
- Brownian Motion to model this desiderata:



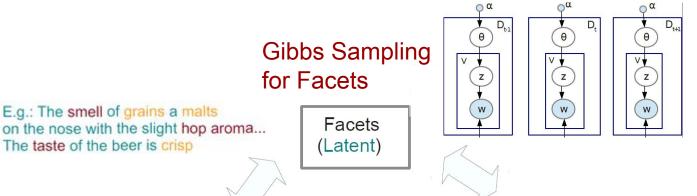


## Inference

Topic Model (Blei et al., JMLR '03)

- + Users (Author-topic model, Rosen-Zvi et al., UAI '04)
- + Continuous Time (Dynamic topic model, Wang et al., UAI '08)
- + Continuous Experience (this work)

## Sampling based Inference for High Dimensional Data



Metropolis Hastings for Exp. evolution

E.g.: The smell of grains a malts

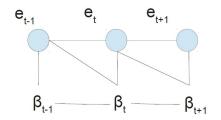
The taste of the beer is crisp

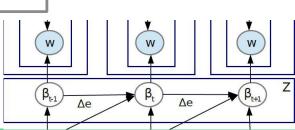
Experience (Latent)



Language Model

Words (Observed) at (Observed) Timepoints Kalman Filter for LM evolution

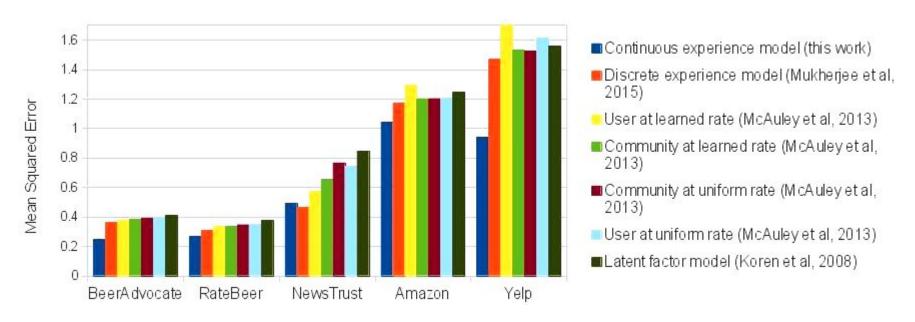




# Datasets

| Dataset             | #Users  | #Items  | #Ratings   | #Time<br>(Years) |
|---------------------|---------|---------|------------|------------------|
| Beer (BeerAdvocate) | 33,387  | 66,051  | 1,586,259  | 16               |
| Beer (RateBeer)     | 40,213  | 110,419 | 2,924,127  | 13               |
| Movies (Amazon)     | 759,899 | 267,320 | 7,911,684  | 16               |
| Food (Yelp)         | 45,981  | 11,537  | 229,907    | 11               |
| Media (NewsTrust)   | 6,180   | 62,108  | 89,167     | 9                |
| TOTAL               | 885,660 | 517,435 | 12,741,144 | -                |

# RQ: Can we recommend items better, if we consider user experience?



# Interpretability: Top Words by Experienced Users

|              | Most Experience                                                                                                | Least Experience                                                       |
|--------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| BeerAdvocate | chestnut_hued near_viscous<br>cherry_wood sweet_burning<br>faint_vanilla woody_herbal<br>citrus_hops mouthfeel | originally flavor color<br>poured pleasant bad<br>bitter sweet         |
| Amazon       | aficionados minimalist<br>underwritten theatrically<br>unbridled seamless<br>retrospect overdramatic           | viewer entertainment<br>battle actress tells<br>emotional supporting   |
| Yelp         | smoked marinated savory signature contemporary selections delicate texture                                     | mexican chicken salad love better eat atmosphere sandwich              |
| NewsTrust    | health actions cuts medicare oil climate spending unemployment                                                 | bad god religion iraq<br>responsibility<br>questions clear<br>powerful |

## **Insights from GBM Trajectory of Users**

- Experienced users mature faster than amateurs, exhibit a higher variance
- Progression depends more on time spent in community than on activity

## **Take-away / Contributions**

- Users' experience evolve continuously in nature, along with their language usage
- Recommendation models can be improved by explicitly considering user experience
- Finally, we propose a Brownian Motion based stochastic model to capture the above phenomena

# **Outline**

- Motivation
- Related Work
- Credibility Analysis
  - Health Communities
  - News Communities
  - Temporal Evolution & Review Communities
- Related Applications
- Conclusions

# RQ: Can we use this framework for finding helpful product reviews?

#### ★★★★★ Bang Baby, Im The Samsung Galaxy s6 (Gold Platinum)

By ranjana shejwal on 25 May 2015

Colour: Gold Verified Purchase

just an absolute beast of a phone, dont worry about the battery life, just turn of on ur s6 will skyrocket like anything fetching about 4-5 hours of screen on time modes, dont go by the negative reviews, and yes do buy the gold platinum on regret it for even a second.. the black and white ones look just like an ordinan according to lighting conditions, it will shift its color from gold to silver, it just g

Comment 44 people found this helpful.

/as this review helpful to you?

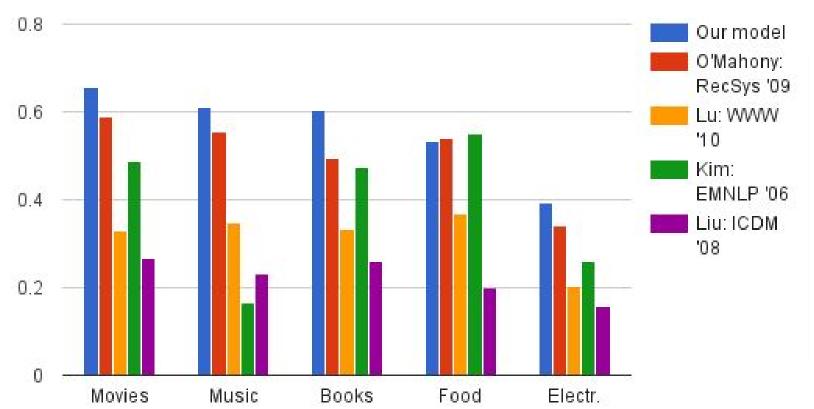
## Distributional Hypotheses

- Previews (e.g., camera reviews) with similar facet distribution (e.g., focusing on "zoom" and "resolution") for items are likely to be equally helpful.
- Users with similar facet preferences and expertise are likely to be equally helpful.

# **Experiments: Datasets from Amazon**

| Factors  | Books      | Music     | Movie     | Electronics     | Food    |
|----------|------------|-----------|-----------|-----------------|---------|
| #Users   | 2,588,991  | 1,134,684 | 889,176   | 811,034         | 256,059 |
| # I tems | 929,264    | 556,814   | 253,059   | 82,067          | 74,258  |
| #Reviews | 12,886,488 | 6,396,350 | 7,911,684 | $1,\!241,\!778$ | 568,454 |

# Ranking Task: Spearman Rho of our model vs. baselines.



We can use a similar idea to detect fake / anomalous reviews using consistency analysis of latent semantic factors

### **Snapshot of Inconsistencies**

1. Rating and review description (promotion/demotion)

Excellent product-alarm zone, technical support is almost non-existent because of this i will look to another product. this is unacceptable. [4]

2. Rating and Facet description (irrelevant)

DO NOT BUY THIS. I can't file because Turbo Tax doesn't have

software updates from the IRS "because of Hurricane Katrina". [1]

3. Temporal bursts (group spamming)

Dan's apartment was beautiful, a great location. (3/14/2012)[5]

I highly recommend working with Dan and... (3/14/2012) [5]

Dan is super friendly, confident... (3/14/2012) [4]

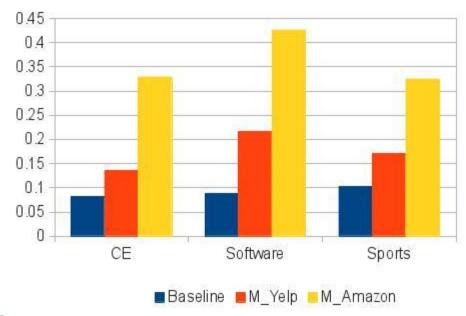
my condo listing with no activity, Dan stepped in (4/18/2012) [5]

Subhabrata Mukherjee, Sourav Dutta, Gerhard Weikum: ECML 2016

# Transfer Learning: Yelp to Amazon

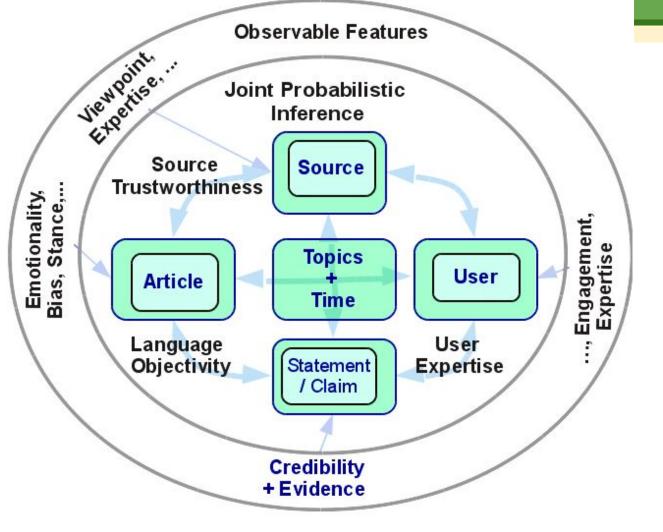
M\_Yelp: Trained on Yelp and tested on Amazon with parameter tuning M\_Amazon: Trained and tested on Amazon using Ranking SVM Training: Reference ranking based on #sales volume of items in Amazon

#### Kendall-Tau Rank Correlation



# Credibility Analysis Applications

- Knowledge-base curation
- Crowd-sourcing applications / aggregation / community question & answering
- Truth-finding
- Expert-finding
- Opinion & Sentiment Mining,
   Recommendation
- Anomaly, Fraud, Rumor
   Detection



Take-away:

Credibility
Analysis as a
Complex
Interactional
Process