Experience aware Item Recommendation in Evolving Review Communities

Subhabrata Mukherjee[†] Hemank Lamba[‡] and Gerhard Weikum[†]

†Max Planck Institute for Informatics ‡Carnegie Mellon University

IEEE International Conference in Data Mining ICDM 2015

Recommendation System

	İı	12	 İk		İn
Uı	5	?	 3		4
U2	?	?	 4		5
:			 •••		
Uk	2	5	 ?		3
:			 		
Um	5	4	 2	• • •	?

$$rec(u,i) = \beta_g + \beta_u + \beta_i + \langle \alpha_u, \phi_i \rangle$$
 user preferences item properties

Use-Case: Camera

- Recommend camera [Canon EOS Rebel EF-S DSLR]
- Facet of interest: *lens*

- My first DSLR. Excellent camera, take great pictures with high definition, without a doubt it makes honor to its name. (5)
- The EF 75-300 mm lens is only good to be used outside. The 2.2X HD lens can only be used for specific items; filters are useless if ISO, AP,... are correct. The short 18-55mm lens is cheap and should have a hood to keep light off lens. (3)

Use-Case: Movies

- Recommend Christopher Nolan movie
- Facet of interest: non-linear narrative style

- Memento (2001): "Backwards told is thriller noir-art empty ultimately but compelling and intriguing this."
- The Dark Knight (2008): Memento was very complicated.
 The Dark Knight was flawless. Heath Ledger rocks!
- Inception (2010): "Inception is to some extent a triumph of style over substance. It is complex only in a structural way, not in terms of plot. It doesn't <u>unravel</u> in the way `Memento' does.

Prior work: McAuley and Leskovec (WWW 2013) exploiting rating behavior evolution over time

Our Contribution:

Analyze influence of different factors like writing style, facet preferences, rating behavior and maturing rate on user experience progression over time

Model a smooth temporal progression in experience

Derive an experience-aware language model to give interpretations

Objective

Recommend item to a user based on his level of experience in consuming the item, which we learn from his ratings and reviews over time

Train a system with his reviews till time 't' and predict user assigned item rating at time 't+1'

User Experience Level: Factors

- Experienced users have similar facet preferences, exhibited in similar rating behavior
 - Even though the ratings may appear temporally apart
 - E.g. Experienced users would find *Memento* to be good at first view

Experienced users have a sophisticated writing style and vocabulary

User Experience Progression: Factors

Maturing rate - community activity

Facet preference – acquired taste

Writing style - language model

Posting Time difference

- Experience level difference
 - Smooth progression

Model

Latent Dirichlet Allocation to model similar facet preferences (acquired taste) and writing style (language model) of users at similar levels of experience

- Experience level difference
 - > Smooth progression over time
 - Hidden Markov Model at each time step, the user stays at current level 'e' or moves to 'e+1'
 - Decision made by the joint interactions
- Time is not modeled explicitly
 - Instead we model experience, as a latent variable,
 which evolves over time

Joint Probability Distribution

$$P(U, E, Z, W, \theta, \phi, \pi; \alpha, \delta, \gamma) = \prod_{u=1}^{U} \prod_{e=1}^{E} \prod_{i=1}^{D_u} \prod_{z=1}^{Z} \prod_{j=1}^{N_{d_u}} \{$$

$$P(\pi_e; \gamma^u) \times P(e_i | \pi_e) \times P(\theta_{u,e}; \alpha_{u,e}) \times P(z_{i,j} | \theta_{u,e_i})$$

experience transition distribution user experience facet distribution

$$\times P(\phi_{e,z};\delta) \times P(w_{i,j}|\phi_{e_i,z_{i,j}})$$

experience facet language distribution

EM Algorithm (1/3)

- E-Step via Collapsed Gibbs Sampling:
 - Estimate P(E|U, Z, W)
 - $\propto P(E|U) \times P(Z|E, U) \times P(W|Z, E)$

EM Algorithm (1/3)

- E-Step via Collapsed Gibbs Sampling:
 - Estimate P(E|U, Z, W)
 - $\propto P(E|U) \times P(Z|E, U) \times P(W|Z, E)$

E-Step 1:
$$P(e_i = e | e_{i-1}, u_i = u, \{z_{i,j} = z_j\}, \{w_{i,j} = w_j\}, e_{-i}) \propto P(e_i | u, e_{i-1}, e_{-i}) \times \prod_j P(z_j | e_i, u, e_{-i}) \times P(w_j | z_j, e_i, e_{-i}) \propto P(e_i | u, e_{i-1}, e_{-i}) \times P(e_i | u, e_{i-1}, e_{-i}) \times P(e_i | e_i, u, e_{-i}) \times P(e_i | e_i,$$

$$\frac{m_{e_i}^{e_{i-1}} + I(e_{i-1} = e_i) + \gamma^u}{m_{\cdot}^{e_{i-1}} + I(e_{i-1} = e_i) + E\gamma^u} \times$$

$$\prod_{j} \frac{n(u, e, ., z_{j}, .) + \alpha_{u, e, z_{j}}}{\sum_{z_{j}} n(u, e, ., z_{j}, .) + \sum_{z_{j}} \alpha_{u, e, z_{j}}} \times \frac{n(., e, ., z_{j}, w_{j}) + \delta}{\sum_{w_{j}} n(., e, ., z_{j}, w_{j}) + V\delta}$$

EM Algorithm (2/3)

- E-Step via Collapsed Gibbs Sampling:
 - Estimate P(Z|W, E)

E-Step 2:
$$P(z_j = z | u_d = u, e_d = e, w_j = w, z_{-j}) \propto \frac{n(u, e, ., z, .) + \alpha_{u, e, z}}{\sum_z n(u, e, ., z, .) + \sum_z \alpha_{u, e, z}} \times \frac{n(., e, ., z, w) + \delta}{\sum_w n(., e, ., z, w) + V\delta}$$

EM Algorithm (3/3)

- M-Step via Support Vector Regression:
 - Minimize MSE to optimize parameters and predict ratings

M-Step:
$$\min_{\alpha_{u,e}} \frac{1}{2} \alpha_{u,e}^T \alpha_{u,e} + C \times$$

$$\sum_{d=1}^{D_u} (max(0, |r_d - \alpha_{u,e}|^T < \beta_g(e), \beta_u(e), \beta_i(e), \phi_{e,z}(d) > |-\epsilon|)^2$$

Dataset Statistics

Dataset	#Users	#Items	#Ratings
Beer (BeerAdvocate)	33,387	66,051	1,586,259
Beer (RateBeer)	40,213	110,419	2,924,127
Movies (Amazon)	759,899	267,320	7,911,684
Food (Yelp)	45,981	11,537	229,907
Media (NewsTrust)	6,180	62,108	134,407
TOTAL	885,660	517,435	12,786,384

JERTM: MSE Improvement over Baselines

From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise through Online Reviews: McAuley and Leskovec et. al (WWW 2013)

Evolution Effect

Models	Beer Advocat		News Trust	Amazo	on Yelp
Our model (most recent experience level)	0.363	0.309	0.373	1.174	1.469
Our model (past experience level)	0.375	0.362	0.470	1.200	1.642

Experience Language Model for Beer Facet "*Taste*"

Experience Level 1: drank, bad, maybe, terrible, dull, shit

Experience Level 2: bottle, sweet, nice hops, bitter, strong light, head, smooth, good, brew, better, good

Expertise Level 3: sweet alcohol, palate down, thin glass, malts, poured thick, pleasant hint, bitterness, copper hard

Experience Level 4: smells sweet, thin bitter, fresh hint, honey end, sticky yellow, slight bit good, faint bitter beer, red brown, good malty, deep smooth bubbly, damn weak

Experience Level 5: golden head lacing, floral dark fruits, citrus sweet, light spice, hops, caramel finish, acquired taste, hazy body, lacing chocolate, coffee roasted vanilla, creamy bitterness, copper malts, spicy honey

Experience Language Model for Movie Facet "Plot" and "Narrative Style"

- Level 1: stupid people supposed wouldnt pass bizarre totally cant Level 2:storyline acting time problems evil great times didnt money ended simply falls pretty
- Level 3: movie plot good young epic rock tale believable acting
- Level 4: script direction years amount fast primary attractive sense talent multiple demonstrates establish
- Level 5: realism moments filmmaker visual perfect memorable recommended genius finish details defined talented visceral nostalgia
- Level 1: film will happy people back supposed good wouldnt cant Level 2: storyline believable acting time stay laugh entire start funny Level 3 & 4: narrative cinema resemblance masterpiece crude undeniable admirable renowned seventies unpleasant myth nostalgic Level 5: incisive delirious personages erudite affective dramatis nucleus cinematographic transcendence unerring peerless fevered