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Recommendation System

user preferences item properties



  

Use-Case: Camera 

➢Recommend camera [Canon EOS Rebel EF-S DSLR]

➢Facet of interest: lens

➢ My first DSLR. Excellent camera, take great pictures with high 
definition, without a doubt it makes honor to its name. (5)

➢ The EF 75-300 mm lens is only good to be used outside. The 
2.2X HD lens can only be used for specific items; filters are 
useless if ISO, AP,... are correct. The short 18-55mm lens is 
cheap and should have a hood to keep light off lens. (3)



  

Use-Case: Movies 
➢Recommend Christopher Nolan movie
➢Facet of interest: non-linear narrative style

➢ Memento (2001): “Backwards told is thriller noir-art empty 
ultimately but compelling and intriguing this.”

➢ The Dark Knight (2008): Memento was very complicated. 
The Dark Knight was flawless. Heath Ledger rocks !

➢ Inception (2010): “Inception is to some extent a triumph of 
style over substance. It is complex only in a structural way, not 
in terms of plot. It doesn't unravel in the way `Memento' does.



  

➢ Prior work: McAuley and Leskovec (WWW 2013) 
exploiting rating behavior evolution over time

Our Contribution:

➢ Analyze influence of different factors like writing style, 
facet preferences, rating behavior and maturing rate on 
user experience progression over time

➢ Model a smooth temporal progression in experience

➢ Derive an experience-aware language model to give 
interpretations



  

Objective

➢ Recommend item to a user based on his level 
of experience  in consuming the item, which we 
learn from his ratings and reviews over time

➢ Train a system with his reviews till time 't' and 
predict user assigned item rating at time 't+1' 



  

User Experience Level: Factors

➢ Experienced users have similar facet preferences, 
exhibited in similar rating behavior

➢ Even though the ratings may appear temporally apart
➢ E.g. Experienced users would find Memento to be good 

at first view

➢ Experienced users have a sophisticated writing 
style and vocabulary



  

User Experience Progression: Factors

➢ Maturing rate - community activity

➢ Facet preference – acquired taste 

➢ Writing style - language model

➢ Posting Time difference

➢ Experience level difference
➢ Smooth progression



  

➢ Latent Dirichlet Allocation to model similar facet 
preferences (acquired taste) and writing style (language 
model) of users at similar levels of experience

➢ Experience level difference
➢ Smooth progression over time
➢ Hidden Markov Model  - at each time step, the user stays at 

current level 'e' or moves to 'e+1'
➢ Decision made by the joint interactions

➢ Time is not modeled explicitly
➢ Instead we model experience, as a latent variable,

which evolves over time

Model



  

Generative Model: HMM-LDA
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Generative Model: HMM-LDA
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Generative Model: HMM-LDA
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Generative Model: HMM-LDA
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Generative Model: HMM-LDA
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Joint Probability Distribution



  

EM Algorithm (1/3)

➢ E-Step via Collapsed Gibbs Sampling: 
➢ Estimate P(E|U, Z, W ) 

 ∝ P(E|U ) X P (Z|E, U ) X P (W |Z, E)



  

EM Algorithm (1/3)

➢ E-Step via Collapsed Gibbs Sampling: 
➢ Estimate P(E|U, Z, W ) 

 ∝ P(E|U ) X P (Z|E, U ) X P (W |Z, E)

∝



  

EM Algorithm (2/3)

➢ E-Step via Collapsed Gibbs Sampling: 
➢ Estimate P(Z|W, E)



  

➢ M-Step via Support Vector Regression: 
➢ Minimize MSE to optimize parameters and predict ratings

EM Algorithm (3/3)



  

Dataset Statistics



  

JERTM: MSE Improvement 
over Baselines

From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise through Online 
Reviews: McAuley and Leskovec et. al (WWW 2013)



  

Evolution Effect



  

Experience Language Model for 
Beer Facet “Taste”



  

Experience Language Model for Movie 
Facet “Plot” and “Narrative Style”
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