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Motivation

● Online communities are dynamic
– Users join and leave

– Adopt vocabulary, adapt to evolving trends

– Mature over time

● How to capture evolving user maturity?
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Example 1
● Consider following camera reviews by John:

– My first DSLR. Excellent camera, takes great 
pictures with high definition, without a doubt it 
makes honor to its name.              [Aug, 1997]

– The EF 75-300 mm lens is only good to be used 
outside. The 2.2X HD lens can only be used for 
specific items; filters are useless if ISO, AP,... . 
The short 18-55mm lens is cheap and should 
have a hood to keep light off lens.                           
                                                       [Oct, 2012]
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Example 2

● Beer: Moosehead Lager

– The smell of grains a malts on the nose with 
the slight hop aroma in there. The taste of 
the beer is crisp ....

– The beer tastes absolutely terrible ...
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Example
● Consider following camera reviews by John:

– My first DSLR. Excellent camera, take great 
pictures with high definition, without a doubt it 
makes honor to its name.              [Aug, 1997]

– The EF 75-300 mm lens is only good to be used 
outside. The 2.2X HD lens can only be used for 
specific items; filters are useless if ISO, AP,... . 
The short 18-55mm lens is cheap and should 
have a hood to keep light off lens.                           
                                                       [Oct, 2012]

RQ1: How to quantify this change in user maturity 
(referred to as experience in our work) ?

RQ2: How to model this evolution or 
progression in maturity?
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Use-cases

● Recommend item to a user based on her 
maturity to consume it

– Maturity / Experience evolves over time

● Identify experienced users
– E.g.: Medical professionals in Health 

communities

● Crowd-sourcing applications / aggregation / 
community Q&A
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Prior Work: Experience Evolution

(1) Users at similar levels of experience have 
similar rating behavior and facet preferences      
                            [J. McAuley, J. Leskovec, WWW '13]  
 

(2) Additionally, users at similar levels of 
experience have similar writing style                   
             [S. Mukherjee, H. Lamba, G, Weikum, ICDM '15]
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Abrupt Transition

Prior Works: Discrete Experience

Assumption: At each timepoint (of writing a review) a user remains 
at the same level of experience or moves to the next level
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Current Work: Continuous Experience
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Effect of Discrete Evolution on 
Language Model

Language Model changes at the same 
(discrete) level of experience.

Exchangeability principle violated in discrete model.
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Continuous Experience Evolution: 
Assumptions

● Continuous-time process, always positive

● Markovian assumption: Experience at current time 
depends only on the latest observed experience

● Drift: Overall trend to increase over time

● Volatility: Progression may not be smooth with occasional 
volatility. E.g.: series of expert reviews followed by a 
sloppy one
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● Continuous-time process, always positive

● Markovian assumption: Experience at current time 
depends only on the latest observed experience

● Drift: Overall trend to increase over time

● Volatility: Progression may not be smooth with occasional 
volatility. E.g.: series of expert reviews followed by a 
sloppy one

We show these properties to be satisfied by the 
continuous-time stochastic process:

Geometric Brownian Motion 

Continuous Experience Evolution: 
Assumptions
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Geometric Brownian Motion
● Stochastic process to model population growth, 

financial processes like stock price behavior with 
random noise

● Natural continuous-state alternative to discrete-state 
space Hidden Markov Model

● Continuous time stochastic process, where log(E
t
) 

follows Brownian Motion with volatility and drift
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Geometric Brownian Motion

● Stochastic Differential Equation: dE
t
 = μE

t
dt + σE

t
dW

t

● Analytic solution: E
t
 = E

0
 exp( ( μ – σ2 / 2 ) t ) + σ W

t 
)

deterministic 
trend

unpredictable
volatility

E
t
 → Experience at time 't'

Starting experience trend volatility Wiener Process / 
Standard Brownian Motion

t → time
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Geometric Brownian Motion

● Stochastic Differential Equation: dE
t
 = μE

t
dt + σE

t
dW

t

● Analytic solution: E
t
 = E

0
 exp( ( μ – σ2 / 2 ) t ) + σ W

t 
)

● Log(E
t
) is log-normally distributed

deterministic 
trend

E
t
 → Experience at time 't'

Starting experience trend volatilityt → time
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Continuous Language Model (LM) 
Evolution: Assumptions

● Users' LM also evolves with experience evolution

● Smoothly evolve over time preserving Markov property of 
experience evolution

● Variance changes with experience change between timepoints

– If user's experience does not change between 
successive timepoints, LM remains almost same
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Continuous Language Model

β
t,z,w  

 = Probability of observing word 'w' for facet 

'z' at time 't'

β
t,z,w   

~ Normal ( β
t-1,z,w

 , σ ● |e
t
 - e

t-1
|)

LM at time 't' LM at time 't-1' Experience change

The smell of grains a malts on the nose with the slight hop aroma.... 
The taste of the beer is crisp
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Continuous Language Model

β
t,z,w  

 = Probability of observing word 'w' for facet 

'z' at time 't'

β
t,z,w   

~ Normal ( β
t-1,z,w

 , σ ● |e
t
 - e

t-1
|)

LM at time 't' LM at time 't-1' Experience change

Following principles of standard dynamic systems 
with Gaussian noise

The smell of grains a malts on the nose with the slight hop aroma.... 
The taste of the beer is crisp
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Continuous Language Model (LM): 
Challenges

● Experience and LM are continuous 
distributions, but words in documents have to 
be generated from discrete distribution

● Temporal granularity: LM does not evolve at 
the same resolution as experience does
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Inference

Facets
(Latent) 

Experience
(Latent) 

Language Model

Words (Observed) at
(Observed) Timepoints 

E.g.: The smell of grains a malts 
on the nose with the slight hop aroma.... 
The taste of the beer is crisp



Subhabrata Mukherjee Continuous Experience-aware Language Model            SIGKDD 2016 26

Inference
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Inference

Topic (or, Facet) Model (Blei et al., JMLR '03)

+ Users 
( Author-topic model, Rosen-Zvi et al., UAI '04)

+ Continuous Time 
(Continuous time dynamic topic model, 
  Wang et al., UAI '08)

+ Continuous Experience 
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Inference: Estimate Facets

Facets
(Latent) 

Estimate facets by Gibbs sampling as in standard 
Latent Dirichlet Allocation

keeping LM and experience unchanged
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Inference: Estimate LM

Language Model (Latent)

Words (Observed) at
(Observed) Timepoints 

Estimate the following state transition model:

β
t   

~ Normal ( β
t-1

 , σ ● Δe
t
)

w
n
 ~ Multinomial ( f ( β

t 
) )

with Kalman Filter and previously inferred latent facets
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Inference: Estimate LM

➢ Models sequential LM evolution
➢ Continuous-state analog to 

discrete HMM

Estimate the following state transition model:

β
t   

~ Normal ( β
t-1

 , σ ● Δe
t
)

w
n
 ~ Multinomial ( f ( β

t 
) )

with Kalman Filter and previously inferred latent facets

Language Model (Latent)

Words (Observed) at
(Observed) Timepoints 
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Inference: Estimate Experience

Experience
(Latent) 

e
t-1

e
t

e
t+1

β
t-1 

β
t β

t+1 

Change in experience at time 't' affects 
language models at time 't' and 't+1'

Exploit this to derive proposal distribution for 
Metropolis Hastings (MCMC sampling)

β
t   

~ Normal ( β
t-1

 , σ |e
t
 - e

t-1
|)

e
t
  → experience at time 't'

β
t  
→ LM at time 't'
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Dataset Statistics
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Log-Likelihood, Smoothness, Convergence

Loglikelihood, Smoothness and 
Convergence
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Mean Squared Error: 
Item Rating Prediction

RQ3: Can we recommend items better, if we consider 
user experience ?
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Mean Squared Error: 
Item Rating Prediction

RQ3: Can we recommend items better if we consider 
user experience ?
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Experience Progression: Insights
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Experience Progression: Insights

Experienced users mature faster than amateurs, 
exhibit a higher variance

Progression depends more on time spent in 
community than on activity
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Overall usage of each word increased over time.
However evolution path is different.

Trace Evolving Norms with Time 
and Experience
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Interpretability: Top Words by Experienced Users

Interpretability: Top Words by 
Experienced Users
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Interpretability: Top Words by Experienced Users

Interpretability: Top Words by 
Experienced Users
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Conclusions
● Users' experience evolve continuously in nature, along 

with their language usage

● Experienced users have distinctive writing style, maturing 
over time

● Recommendation models can be improved by explicitly 
considering user experience

● Finally, we proposed a Brownian Motion based stochastic 
model to capture the above phenomena


