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Objective: Find useful /
helpful product reviews
in online communities




1. Prediction

Predict the helpfulness

score of a review as (x/y):

‘X’ number of users found
the review helpful out of ‘y’

Tasks number of users
Ranking

Rank the reviews for any
item based on the
helpfulness scores




Review 1

“My first DSLR. Excellent
camera, takes great pictures
with high definition, without
a doubt it makes honor to its
name.”

Review 2

“The EF 75-300 mm lens is only
good to be used outside. The
2.2X HD lens can only be used
for specific items; filters are
useless if ISO, AP,.... The short
18-55mm lens is cheap and
should have a hood to keep
light off lens.”




Review 1 Review 2

“The EF 75-300 mm lens is only
good to be used outside. The
2.2X HD lens can only be used

“My first DSLR. Excellent

camera, takes great pictures
with high definition, without

a doubt it makes honor to its for specific items; filters are
name.” useless if ISO, AP,.... The short

18-55mm lens is cheap and
should have a hood to keep

Review 2 is more helpful & informative than Review 1
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Review 2 talks about important facets of the camera




Review 1 Review 2

“The EF 75-300 mm lens is only
good to be used outside. The
2.2X HD lens can only be used

“My first DSLR. Excellent

camera, takes great pictures
with high definition, without

a doubt it makes honor to its for specific items; filters are
name.” useless if ISO, AP,.... The short

18-55mm lens is cheap and
should have a hood to keep

Review 2 seems to have been written by an expert user




Sl U NCINECREIEYS by same user

“My first DSLR. Excellent camera, “The EF 75-300 mm lens is only good
takes great pictures with high to be used outside. The 2.2X HD lens
definition, without a doubt it can only be used for specific items;
makes honor 1o its name.~ filters are useless if ISO, AP,... . The

[Aug, 1997] short 18-55mm lens is cheap and
should have a hood to keep light off
lens.” [ [Oct, 2012] ]

Temporal Evolution: User 2 evolved into an expert and more
helpful user now 2
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definition, without a doubt it can only be used for specific items;
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How do we find whether a review is written by an expert user?
How do we model the progression in expertise of a user? -




Discrete

Users at similar levels of
expertise have similar writing
style, facet preferences, and
rating behavior

[S. Mukherjee, H. Lamba, G.
Weikum, ICDM '15]

Expertise Evolution
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Assumption: At each timepoint (of writing a
review) a user remains at the same level
of (latent) expertise, or moves to the next
level v




Continuous Expertise Evolution with
Geometric Brownian Motion
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Can we use similar principles to find
useful / helpful product reviews?
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Distributional Hypotheses

and Semantic Factors

e Reviews (e.g., camera reviews) with similar facet
distribution (e.g., both focusing on “zoom” and
“resolution”) are likely to be equally helpful.

e Helpful reviews focus on the important facets of an item.

e Users with similar facet preferences and expertise are
likely to be equally helpful.
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Consistency Factors

e Prior user reputation (mean helpfulness votes received by
her reviews)

e Prior item prominence (mean helpfulness votes received
by the item’s reviews)

e User rating deviation from community rating on an item

e Global rating deviation (rating bias)

e Timeliness or “Early-bird” bias (temporal offset from the
first review on the item) 1



Joint Model

Input: { Userld, ltemld, Review,

EF 75-300 mm lens is only good to be used outside. . .
Rating, Timestamp }

The 2.2X HD lens... sexy screen on the edges.
Display is the best... Phone is thin built with a good |e® No community-specific characteristics,

grip despite its size. user profile, item metadata etc.
Facets
, (Latent) \
[Expertise ] ((Observed) Words at
~ explicit timepoints in
(Latent) reviews with
\_helpfulness scores )
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Inference

e lLet& be atensor of dimension E X Z (E is the number of
latent expertise levels and Z is the number of latent facets).
Ee’z depicts the opinion of users at (latent) expertise level
‘e’ about (latent) facet ‘7’

e Distributional hypotheses intrinsically integrated in &
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Inference

h(u, i) » helpfulness score of a review by user ‘U’ on item ‘i’ at time ‘'

—_

h’(u: Z) — f(\/Bua /62'3 |T_m|7 |T_T_i|3 |T_G|a bt}a &a \Ij)
Y ]
Observed consistency factors  Unobserved

. 1 & B
U* = argming — Z (h(u, ) — h(u, Z))Q +M||‘I’||g

|U| u,2€U,I

Parameter y_ depicts the importance of facet ‘z’ for

users at expertise level ‘e’ in helpful reviews 17



Generative Model
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Generative Model
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Generative Model
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Experiments: Datasets from Amazon

Factors Books Music Movie Electronics Food
#Users 2,588,991 1,134,684 889.176 811,034 256,059
#]tems 029,264 556,814 253,059 82.067 74.258

#Reviews 12,886,488 6,396,350 7,911,684 1,241,778 568,454
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R_anking Task: Spearman Rho of our model
vs. baselines.
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Log-likelihood
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Facet Preference Divergence with
Expertise (§_ )
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Language Model Divergence with
Expertise (¢__ )
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Interpretability: Top Words for

Most Helpful Reviews

Music: album, lyrics, soundtrack, touch, songwriting, features, rare, musical, lyrical
Books: serious, complex, content, illustrations, picture, genre, literary, witty
Movies: scene, screenplay, depth, justice, humanity, packaging, perfection, flicks
Electronics: adapter, wireless, computer, sounds, camera, range, drives, mounted
Food: expensive, months, clean, texture, spicy, odor, processed, packs, weather,
sticking, caused, scratching, sensation, sipping, smelled
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Interpretability: Top Words for

Least Helpful Reviews

Music: will, good, favorite, cool, great, genius, earlier, notes, attention, place
Books: will, book, time, religious, liberal, material, interest, utterly, moves, movie
Movies: movie, hour, gay, dont, close, previous, features, type, months, meaning
Electronics: order, attach, replaced, write, impressed, install, learn, tool, offered
Food: night, going, haven, fat, avoid, sugar, coffee, store, bodied, graham, variety

29



r Expertise Progression N
W=argmin, f{E,h,Bu,Bi,ru,ri,rg,r,bt;W)J EnEsire Ta ke-away

i N
EXZ U E

A joint analysis of
semantics,
- consistency, and
Expertise °
Y AR . ) find useful product
reviews
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